Penjelasan dengan langkah-langkah:
FUNGSI INVERS
g(x) = 2x + 3
(g o f)(x) = 2x + 5
2f(x) + 3 = 2x + 5
2f(x) = 2x + 5 – 3
f(x) = 2x + 2
2
f(x) = x + 1
3. ( f o g )(x) = f[ g(x) ]
2x + 5 = f( 2x + 3 )
Misal : 2x + 3 = R
2x = R - 3
R - 3 + 5 = f(R)
R + 2 = f(R)
f(x) = x + 2
f(x) = y
x + 2 = y
x = y - 2
f⁻¹(x) = x - 2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
FUNGSI INVERS
g(x) = 2x + 3
(g o f)(x) = 2x + 5
2f(x) + 3 = 2x + 5
2f(x) = 2x + 5 – 3
f(x) = 2x + 2
2
f(x) = x + 1
→ f-¹(x) = x – 1 ✔
3. ( f o g )(x) = f[ g(x) ]
2x + 5 = f( 2x + 3 )
Misal : 2x + 3 = R
2x = R - 3
R - 3 + 5 = f(R)
R + 2 = f(R)
f(x) = x + 2
f(x) = y
x + 2 = y
x = y - 2
f⁻¹(x) = x - 2