Jawab:[4.] Keliling = 24 cm[5.] √3 : 1
Penjelasan :[4.] PythagorasAD² = AE² + BC²AD² = 3² + 4²AD² = 9 + 16AD² = 25AD = √25AD = 5 cmKeliling = AD + AE + BE + BC + CDKeliling = 5 + 3 + 6 + 4 + 6Keliling = 24 cm
[5.] AB = xtan30° = AB/BDmaka 1/√3 = x/BDBD = x√3Perbandingan luasABD : ABC =(AB·BD÷2) : (AB·BC÷2) =(AB·BD) : (AB·BC) =AB = BC, maka(AB·BD) : (AB·AB) =(x · x√3) : (x · x) =√3 : 1
(xcvi)
Penjelasan dengan langkah-langkah:
4. AD^2 = AE^2 + DE^2
AD^2 = 3^2 + 4^2
AD = √25
AD = 5 cm
Keliling : 9 cm + 4 cm + 6 cm + 5 cm = 24 cm
5. AB = sin 30 × AD
AB = 1/2 × 24√2
AB = 12√2 cm
BD = AB × tan 60
BD = 12√2 × √3 = 12√6cm
Luas ABD
1/2 × 12√2 × 12√6
= 72 √12 cm
= 144 √3 cm^2
Luas ABC
1/2 × 12√2 × 12√2
= 72 √4 cm
= 144 cm^2
ABD : ABC = 144√3 cm^2 : 144 cm^2
= √3 : 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
[4.] Keliling = 24 cm
[5.] √3 : 1
Penjelasan :
[4.] Pythagoras
AD² = AE² + BC²
AD² = 3² + 4²
AD² = 9 + 16
AD² = 25
AD = √25
AD = 5 cm
Keliling = AD + AE + BE + BC + CD
Keliling = 5 + 3 + 6 + 4 + 6
Keliling = 24 cm
[5.] AB = x
tan30° = AB/BD
maka 1/√3 = x/BD
BD = x√3
Perbandingan luas
ABD : ABC =
(AB·BD÷2) : (AB·BC÷2) =
(AB·BD) : (AB·BC) =
AB = BC, maka
(AB·BD) : (AB·AB) =
(x · x√3) : (x · x) =
√3 : 1
(xcvi)
Penjelasan dengan langkah-langkah:
4. AD^2 = AE^2 + DE^2
AD^2 = 3^2 + 4^2
AD = √25
AD = 5 cm
Keliling : 9 cm + 4 cm + 6 cm + 5 cm = 24 cm
5. AB = sin 30 × AD
AB = 1/2 × 24√2
AB = 12√2 cm
BD = AB × tan 60
BD = 12√2 × √3 = 12√6cm
Luas ABD
1/2 × 12√2 × 12√6
= 72 √12 cm
= 144 √3 cm^2
Luas ABC
1/2 × 12√2 × 12√2
= 72 √4 cm
= 144 cm^2
ABD : ABC = 144√3 cm^2 : 144 cm^2
= √3 : 1