" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
4. ²㏒x + ²㏒y³ = 13²㏒xy³ = ²㏒
xy³ =
²㏒x - ²㏒y = 5
²㏒x/y = ²㏒
x/y =
x = y
xy³ =
.y.y³ =
=
y = 2²
y = 4
x= 32y
= 32.4
= 128
x+y = 132
b^2 - 4ac = 0
(-(p - 2))^2 - 4(1)(p + 1) = 0
p^2 - 4p + 4 - 4p - 4 = 0
p^2 - 8p = 0
p(p - 8) = 0
p = 0 atau p = 8
4) 2logx + 2logy^3 = 13 => 2logx + 3 . 2logy = 13
2logx - 2logy = 5
Misal 2logx = p dan 2logy = q
p + 3q = 13
p - q = 5
---------------- --
.... 4q = 8 ==> q = 2
p - q = 5 => p - 2 = 5 => p = 7
q = 2 => 2logy = 2log2^2 => y = 2^2 = 4
p = 7 => 2logx = 2log2^7 => x = 2^7 = 128
x + y = 128 + 4 = 132