DImensI TIGaKubusjarak titik ke garis
Kubus ABCD FGHs= 10 cmAC= CH = AH = diagonal sisi= s√2= 10√2
CK= KH = 1/2 AC = 1/2 x 10√2 = 5√2[tex]\sf AK = \sqrt{AC^2 - CK^2}[/tex]
[tex]\sf AK = \sqrt{(10\sqrt2)^2 - (5\sqrt2)^2}[/tex]
[tex]\sf AK = \sqrt{200 - 50} = \sqrt {150}[/tex][tex]\sf AK = 5\sqrt 6[/tex]
jarak A ke garis CH = AK = 5√ 6 cm
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
DImensI TIGa
Kubus
jarak titik ke garis
Kubus ABCD FGH
s= 10 cm
AC= CH = AH = diagonal sisi= s√2= 10√2
CK= KH = 1/2 AC = 1/2 x 10√2 = 5√2
[tex]\sf AK = \sqrt{AC^2 - CK^2}[/tex]
[tex]\sf AK = \sqrt{(10\sqrt2)^2 - (5\sqrt2)^2}[/tex]
[tex]\sf AK = \sqrt{200 - 50} = \sqrt {150}[/tex]
[tex]\sf AK = 5\sqrt 6[/tex]
jarak A ke garis CH = AK = 5√ 6 cm