Integral
∫x^n dx = 1/(n + 1) x^(n + 1) + C
∫(4x⁶ - 4x³ + 16x² - 6x + 5) dx [1 -1]
= 4/7 x⁷ - 4/4 x⁴ + 16/3 x³ - 6/2 x² + 5x
= 4/7 x⁷ - x⁴ + 16/3 x³ - 3x² + 5x
= 4/7 (1⁷ - (-1)⁷) - (1⁴ - (-1)⁴) + 16/3 (1³ - (-1)³) - 3(1² - (-1)²) + 5(1 - (-1))
= 4/7 × 2 - 0 + 16/3 × 2 - 0 + 5 × 2
= 8/7 + 32/3 + 10
= 1 1/7 + 10 2/3 + 10
= 21 + (1/7 + 2/3)
= 21 + (3 + 14)/21
= 21 17/21
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Integral
∫x^n dx = 1/(n + 1) x^(n + 1) + C
∫(4x⁶ - 4x³ + 16x² - 6x + 5) dx [1 -1]
= 4/7 x⁷ - 4/4 x⁴ + 16/3 x³ - 6/2 x² + 5x
= 4/7 x⁷ - x⁴ + 16/3 x³ - 3x² + 5x
= 4/7 (1⁷ - (-1)⁷) - (1⁴ - (-1)⁴) + 16/3 (1³ - (-1)³) - 3(1² - (-1)²) + 5(1 - (-1))
= 4/7 × 2 - 0 + 16/3 × 2 - 0 + 5 × 2
= 8/7 + 32/3 + 10
= 1 1/7 + 10 2/3 + 10
= 21 + (1/7 + 2/3)
= 21 + (3 + 14)/21
= 21 17/21