LiMiT
-
ingat :
lim_(x→∞) 1 / x = 0
maka,
lim_(x→∞) [(3x³ + x² - 2x + 1)/(x² - 5x - 4)
= (3 + 0 - 0 + 0) / (0 - 0 - 0)
= 3 / 0
= ∞
#
lim_(x→∞) [(2x³ + 6x - 5)/(x⁴ - x³ + 2x + 1)
= (0 + 0 - 0) / (1 - 0 + 0 + 0)
= 0 / 1
= 0
lim_(x→∞) [(8x⁴ - 3x + x - 2)/(2x⁴ + x³ - 3x + 1)]
= (9 - 0 + 0 - 0) / (2 + 0 - 0 + 0)
= 9/2
lim_(x→∞) [4 - (2ˣ - 1)/(2ˣ + 1)]
lim_(x→∞) [4 - ((2ˣ - 1)/(2ˣ + 1))/1]
= 4 - 1
= 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
LiMiT
-
ingat :
lim_(x→∞) 1 / x = 0
maka,
lim_(x→∞) [(3x³ + x² - 2x + 1)/(x² - 5x - 4)
= (3 + 0 - 0 + 0) / (0 - 0 - 0)
= 3 / 0
= ∞
#
lim_(x→∞) [(2x³ + 6x - 5)/(x⁴ - x³ + 2x + 1)
= (0 + 0 - 0) / (1 - 0 + 0 + 0)
= 0 / 1
= 0
#
lim_(x→∞) [(8x⁴ - 3x + x - 2)/(2x⁴ + x³ - 3x + 1)]
= (9 - 0 + 0 - 0) / (2 + 0 - 0 + 0)
= 9/2
#
lim_(x→∞) [4 - (2ˣ - 1)/(2ˣ + 1)]
lim_(x→∞) [4 - ((2ˣ - 1)/(2ˣ + 1))/1]
= 4 - 1
= 3
-