Jawaban:
d. 13
Penjelasan dengan langkah-langkah:
l² = p² - (r1 - r2)²
12² = p² - (8-3)²
144 = p² - 5²
144 = p² - 25
p² = 144 + 25
p² = 169
p = √169
p = 13 cm
strawbee◝(⁰▿⁰)◜
[tex] \sf p = \sqrt{ {L}^{2} + (R - r) {}^{2} } [/tex]
[tex] \sf p = \sqrt{ {12}^{2} + (8 - 3) {}^{2} } [/tex]
[tex] \sf p = \sqrt{ {12}^{2} + {5}^{2} } [/tex]
[tex] \sf p = \sqrt{144 + 25} [/tex]
[tex] \sf p = \sqrt{169} [/tex]
[tex] \sf p = \sqrt{ {13}^{2} } [/tex]
[tex] \sf p = \red{13 \: cm}[/tex]
'조슈아' (Svt)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
d. 13
Penjelasan dengan langkah-langkah:
l² = p² - (r1 - r2)²
12² = p² - (8-3)²
144 = p² - 5²
144 = p² - 25
p² = 144 + 25
p² = 169
p = √169
p = 13 cm
strawbee◝(⁰▿⁰)◜
Jawaban:
Penyelesaian :
Jarak kedua pusat
[tex] \sf p = \sqrt{ {L}^{2} + (R - r) {}^{2} } [/tex]
[tex] \sf p = \sqrt{ {12}^{2} + (8 - 3) {}^{2} } [/tex]
[tex] \sf p = \sqrt{ {12}^{2} + {5}^{2} } [/tex]
[tex] \sf p = \sqrt{144 + 25} [/tex]
[tex] \sf p = \sqrt{169} [/tex]
[tex] \sf p = \sqrt{ {13}^{2} } [/tex]
[tex] \sf p = \red{13 \: cm}[/tex]
'조슈아' (Svt)