Jawab:
Penjelasan dengan langkah-langkah:
nomor 1
f'(x) < 0
3x^2 - 18x - 48 < 0
3(x^2 - 6x - 16) < 0
3(x + 2)(x - 8) < 0
-2 < x < 8
nomor 2
f'(x) > 0
3x^2 + 6x - 9 > 0
3(x^2 + 2x - 3) > 0
3(x + 3)(x - 1) > 0
x < -3 atau x > 1
nomor 3
f'(x) = 0
6x^2 - 18x + 12 = 0
6(x^2 - 3x + 2) = 0
6(x - 2)(x - 1) = 0
x = 2
x = 1
f''(x) = 12x - 18
f''(2) = 12(2) - 18 = 6 (titik minimum)
f''(1) = 12(1) - 18 = -6 (titik maksimum)
f(1) = 2 - 9 + 12 = -7 + 12 = 5
titik maksimum = (1,5)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
nomor 1
f'(x) < 0
3x^2 - 18x - 48 < 0
3(x^2 - 6x - 16) < 0
3(x + 2)(x - 8) < 0
-2 < x < 8
nomor 2
f'(x) > 0
3x^2 + 6x - 9 > 0
3(x^2 + 2x - 3) > 0
3(x + 3)(x - 1) > 0
x < -3 atau x > 1
nomor 3
f'(x) = 0
6x^2 - 18x + 12 = 0
6(x^2 - 3x + 2) = 0
6(x - 2)(x - 1) = 0
x = 2
x = 1
f''(x) = 12x - 18
f''(2) = 12(2) - 18 = 6 (titik minimum)
f''(1) = 12(1) - 18 = -6 (titik maksimum)
f(1) = 2 - 9 + 12 = -7 + 12 = 5
titik maksimum = (1,5)