Jawaban:
[tex] \sf BC = \sqrt{( {AC }^{2} - {AD }^{2}) + { BD}^{2} } [/tex]
[tex]\sf BC = \sqrt{ {(15}^{2} - {9}^{2} ) + {16}^{2} } [/tex]
[tex]\sf BC = \sqrt{(225 - 81) + {16}^{2} } [/tex]
[tex]\sf BC = \sqrt{144 + 256} [/tex]
[tex]\sf BC = \sqrt{400} [/tex]
[tex]\sf BC = 20 \: cm[/tex]
Jawab:
Penjelasan dengan langkah-langkah:
CD = √AC² - √AD²
= √15² - √9²
= √225 - √81
= √144
= 12 cm
CB = √CD² + √DB²
= √12² + √16²
= √144 + √256
= √400
= 20 cm
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
Penyelesaian :
Mencari panjang BC
[tex] \sf BC = \sqrt{( {AC }^{2} - {AD }^{2}) + { BD}^{2} } [/tex]
[tex]\sf BC = \sqrt{ {(15}^{2} - {9}^{2} ) + {16}^{2} } [/tex]
[tex]\sf BC = \sqrt{(225 - 81) + {16}^{2} } [/tex]
[tex]\sf BC = \sqrt{144 + 256} [/tex]
[tex]\sf BC = \sqrt{400} [/tex]
[tex]\sf BC = 20 \: cm[/tex]
Jawab:
Penjelasan dengan langkah-langkah:
CD = √AC² - √AD²
= √15² - √9²
= √225 - √81
= √144
= 12 cm
CB = √CD² + √DB²
= √12² + √16²
= √144 + √256
= √400
= 20 cm