▪︎a. [tex](f\circ g\circ h)(x)[/tex] =
12(2x² + 3)³ + 21
▪︎b. [tex](f\circ g\circ h)(2)[/tex] =
15993
[tex]\\\green{Diketahui:} [/tex]
f(x) = 3x
g(x) = 4x³ + 7
h(x) = 2x² + 3
[tex]\purple{Ditanya:}[/tex]
▪︎ a. [tex](f\circ g\circ h)(x)[/tex]
▪︎b. [tex](f\circ g\circ h)(2)[/tex]
[tex]\\\\\blue{Pembahasan:}\\[/tex]
Rumus:
[tex](f\circ g\circ h)(x)[/tex]=
f(g(h(x)))
[tex]\\[/tex]
[tex](g\circ h)(x)[/tex] =
g(h(x)) =
4(2x² + 3)³ + 7
[tex](f\circ g\circ h)(x)[/tex] =
f(g(h(x))) =
3{4(2x² + 3)³ + 7} =
[tex](f\circ g\circ h)(2)[/tex] =
12(2(2)² + 3)³ + 21 =
12(11³) + 21 =
12(1331) + 21=
15972 + 21 =
[tex]\\\\\blue{Pelajari~lebih~ lanjut:}[/tex]
MATERI Soal komposisi fungsi,invers :
•https://brainly.co.id/tugas/10798962
•https://brainly.co.id/tugas/2062180
===============================
[tex]\\\\\blue{Detail~ Jawaban:}[/tex]
[tex]\bullet[/tex]Mapel : Matematika
[tex]\bullet[/tex] Kelas : 8
[tex]\bullet[/tex] Materi : Bab 2 Fungsi
[tex]\bullet[/tex] Kata Kunci : komposisi
[tex]\bullet[/tex]Kode soal : 2
[tex]\bullet[/tex] Kode kategori : 8.2.2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
▪︎a. [tex](f\circ g\circ h)(x)[/tex] =
12(2x² + 3)³ + 21
▪︎b. [tex](f\circ g\circ h)(2)[/tex] =
15993
[tex]\\\green{Diketahui:} [/tex]
f(x) = 3x
g(x) = 4x³ + 7
h(x) = 2x² + 3
[tex]\purple{Ditanya:}[/tex]
▪︎ a. [tex](f\circ g\circ h)(x)[/tex]
▪︎b. [tex](f\circ g\circ h)(2)[/tex]
[tex]\\\\\blue{Pembahasan:}\\[/tex]
Rumus:
[tex](f\circ g\circ h)(x)[/tex]=
f(g(h(x)))
[tex]\\[/tex]
[tex](g\circ h)(x)[/tex] =
g(h(x)) =
4(2x² + 3)³ + 7
[tex]\\[/tex]
[tex](f\circ g\circ h)(x)[/tex] =
f(g(h(x))) =
3{4(2x² + 3)³ + 7} =
12(2x² + 3)³ + 21
[tex]\\[/tex]
[tex](f\circ g\circ h)(2)[/tex] =
12(2(2)² + 3)³ + 21 =
12(11³) + 21 =
12(1331) + 21=
15972 + 21 =
15993
[tex]\\\\\blue{Pelajari~lebih~ lanjut:}[/tex]
MATERI Soal komposisi fungsi,invers :
•https://brainly.co.id/tugas/10798962
•https://brainly.co.id/tugas/2062180
===============================
[tex]\\\\\blue{Detail~ Jawaban:}[/tex]
[tex]\bullet[/tex]Mapel : Matematika
[tex]\bullet[/tex] Kelas : 8
[tex]\bullet[/tex] Materi : Bab 2 Fungsi
[tex]\bullet[/tex] Kata Kunci : komposisi
[tex]\bullet[/tex]Kode soal : 2
[tex]\bullet[/tex] Kode kategori : 8.2.2