dickytriyanto8121
F ''(x) = 12 ⇔ di integralin f '(x) = 12x + c ⇔ masukin nilai x = 1 dimana f(x) = 4, maka:
f '(x) = 12x + c f '(1) = 12(1) + c 4 = 12 + c 12 + c = 4 c = 4 - 12 c = -8
subtitusi nilai c ke hasil integral awal: f '(x) = 12x + c f '(x) = 12x + (-8) f '(x) = 12x - 8
nilai f '(x) di integralin lagi, maka: f '(x) = 12x - 8 f(x) = 6x² - 8x + d, masukin nilai x = -1 dengan f(x) = 2 f(-1) = 6(-1)² - 8(-1) + d 2 = 6(1) - (-8) + d 2 = 6 + 8 + d 2 = 14 + d 14 + d = 2 d = 2 - 14 d = -12
f '(x) = 12x + c ⇔ masukin nilai x = 1 dimana f(x) = 4, maka:
f '(x) = 12x + c
f '(1) = 12(1) + c
4 = 12 + c
12 + c = 4
c = 4 - 12
c = -8
subtitusi nilai c ke hasil integral awal:
f '(x) = 12x + c
f '(x) = 12x + (-8)
f '(x) = 12x - 8
nilai f '(x) di integralin lagi, maka:
f '(x) = 12x - 8
f(x) = 6x² - 8x + d, masukin nilai x = -1 dengan f(x) = 2
f(-1) = 6(-1)² - 8(-1) + d
2 = 6(1) - (-8) + d
2 = 6 + 8 + d
2 = 14 + d
14 + d = 2
d = 2 - 14
d = -12
subtitusi nilai d ke hasil integral ke-2
f(x) = 6x² - 8x + d
f(x) = 6x² - 8x + (-12)
f(x) = 6x² - 8x - 12, langkah terakhir masukkan nilai f(2)
f(2) = 6(2)² - 8(2) - 12
f(2) = 6(4) - 16 - 12
f(2) = 24 - 16 - 12
f(2) = 8 - 12
f(2) = -4
jadi, nilai f(2) = -4