Jawaban:
Luas permukaan kubus adalah 294 cm². Hitunglah
[tex] \sf Luas = 6 \times {r}^{2} \: \\ \sf 294 = 6 \times {r}^{2} \\ \sf {r}^{2} = \frac{294}{6} \: \\ \sf {r}^{2} = 49 \: \: \: \: \: \\ \sf r = \sqrt{49} \\ \sf r = \red{7 \: cm}[/tex]
[tex] \boxed{ \pink{ \sf a. \: panjang \: diagonal \: bidang }} \\ \sf diagonal = \sqrt{ {r}^{2} + {r}^{2} } \: \: \: \\ \sf diagonal = \sqrt{ {7}^{2} + {7}^{2} } \: \: \\ \sf diagonal = \sqrt{49 + 49} \: \: \\ \sf diagonal = \sqrt{98} \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf diagonal = \sqrt{49 \times 2} \: \: \: \: \\ \sf diagonal = \sqrt{49} \times \sqrt{2} \\ \sf diagonal = \red{7 \sqrt{2} \: cm \: \: \: \: \: }[/tex]
[tex] \boxed{ \purple{ \sf b. \: panjang \: diagonal \: ruang}} \\ \sf diagonal = \sqrt{ {r}^{2} + {r}^{2} + {r}^{2} } \: \: \: \\ \sf diagonal = \sqrt{ {7}^{2} + {7}^{2} + {7}^{2} } \: \\ \sf diagonal = \sqrt{49 + 49 + 49} \\ \sf diagonal = \sqrt{147} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf diagonal = \sqrt{49 \times 3} \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf diagonal = \sqrt{49} \times \sqrt{3} \: \: \: \: \: \: \: \: \\ \sf diagonal = \red{7 \sqrt{3} \: cm} \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex] \boxed{ \blue{ \sf c. \: volume \: kubus}} \\ \sf v = r \times r \times r \: \: \: \: \: \: \: \\ \sf v = 7 \times 7 \times 7 \: \: \: \: \: \\ \sf v = 7 \times 49 \: \: \: \: \: \: \: \: \: \: \\ \sf v = \red{343 \: {cm}^{3} } \: \: \: \: \: \: \: [/tex]
'비상'
Penjelasan dengan langkah-langkah:
cari sisi dulu
s = √luas 6 sisi ÷ 6sisi
s = √294 ÷ 6
s = √49
s = 7 cm
diagonal bidang (sisi miring dalam segitiga siku²)
= √7²+7²
= √49 + 49
= √98
= √7² × 2
= 7√2
diagoanal ruang
= 7√2 + 7²
= √98 + 49
= √147
= √7²×3
= 7√3
V = Lsisi × t
V = (7 × 7) × 7
V = 49 × 7
V = 343 cm³
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
Penyelesaian :
Luas permukaan kubus adalah 294 cm². Hitunglah
Cari dulu panjang rusuk kubus
[tex] \sf Luas = 6 \times {r}^{2} \: \\ \sf 294 = 6 \times {r}^{2} \\ \sf {r}^{2} = \frac{294}{6} \: \\ \sf {r}^{2} = 49 \: \: \: \: \: \\ \sf r = \sqrt{49} \\ \sf r = \red{7 \: cm}[/tex]
[tex] \boxed{ \pink{ \sf a. \: panjang \: diagonal \: bidang }} \\ \sf diagonal = \sqrt{ {r}^{2} + {r}^{2} } \: \: \: \\ \sf diagonal = \sqrt{ {7}^{2} + {7}^{2} } \: \: \\ \sf diagonal = \sqrt{49 + 49} \: \: \\ \sf diagonal = \sqrt{98} \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf diagonal = \sqrt{49 \times 2} \: \: \: \: \\ \sf diagonal = \sqrt{49} \times \sqrt{2} \\ \sf diagonal = \red{7 \sqrt{2} \: cm \: \: \: \: \: }[/tex]
[tex] \boxed{ \purple{ \sf b. \: panjang \: diagonal \: ruang}} \\ \sf diagonal = \sqrt{ {r}^{2} + {r}^{2} + {r}^{2} } \: \: \: \\ \sf diagonal = \sqrt{ {7}^{2} + {7}^{2} + {7}^{2} } \: \\ \sf diagonal = \sqrt{49 + 49 + 49} \\ \sf diagonal = \sqrt{147} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf diagonal = \sqrt{49 \times 3} \: \: \: \: \: \: \: \: \: \: \: \: \\ \sf diagonal = \sqrt{49} \times \sqrt{3} \: \: \: \: \: \: \: \: \\ \sf diagonal = \red{7 \sqrt{3} \: cm} \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex] \boxed{ \blue{ \sf c. \: volume \: kubus}} \\ \sf v = r \times r \times r \: \: \: \: \: \: \: \\ \sf v = 7 \times 7 \times 7 \: \: \: \: \: \\ \sf v = 7 \times 49 \: \: \: \: \: \: \: \: \: \: \\ \sf v = \red{343 \: {cm}^{3} } \: \: \: \: \: \: \: [/tex]
'비상'
Penjelasan dengan langkah-langkah:
cari sisi dulu
s = √luas 6 sisi ÷ 6sisi
s = √294 ÷ 6
s = √49
s = 7 cm
diagonal bidang (sisi miring dalam segitiga siku²)
= √7²+7²
= √49 + 49
= √98
= √7² × 2
= 7√2
diagoanal ruang
= 7√2 + 7²
= √98 + 49
= √147
= √7²×3
= 7√3
V = Lsisi × t
V = (7 × 7) × 7
V = 49 × 7
V = 343 cm³