h'(x) = 16x³ - 9x² - 4x - 3
Penjelasan dengan langkah-langkah:
f(x) = 4x⁴ - 2x³ + 3x² - 6
g(x) = x³ + 5x² + 3x - 1
h(x) = f(x) - g(x)
h'(x) = ....?
h(x) = 4x⁴ - 2x³ + 3x² - 6 - ( x³ + 5x² + 3x - 1)
h(x) = 4x⁴ - 2x³ + 3x² - 6 - x³ - 5x² - 3x + 1
h(x) = 4x⁴ - 2x³ - x³ + 3x² - 5x² - 3x - 6 + 1
h(x) = 4x⁴ - 3x³ - 2x² - 3x - 5
[tex]\begin{aligned}\displaystyle\tt~ h(x) & =\displaystyle\tt~ {4x}^{4} - {3x}^{3} - {2x}^{2} - 3x - 5 \\ \displaystyle\tt~ h'(x) & =\displaystyle\tt~4.4 {x}^{4 - 1} - 3.3 {x}^{3 - 1} - 2.2 {x}^{2 - 1} - 1.3 {x}^{1 - 1} - 0 \\ \displaystyle\tt~ h'(x) & =\displaystyle\tt~ {16x}^{3} - {9x}^{2} - 4x - 3 \end{aligned}[/tex]
Jadi, turunan pertama fungsi h adalah h'(x) = 16x³ - 9x² - 4x - 3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
h'(x) = 16x³ - 9x² - 4x - 3
Penjelasan dengan langkah-langkah:
Diketahui:
f(x) = 4x⁴ - 2x³ + 3x² - 6
g(x) = x³ + 5x² + 3x - 1
h(x) = f(x) - g(x)
Ditanya:
h'(x) = ....?
Penyelesaian:
h(x) = f(x) - g(x)
h(x) = 4x⁴ - 2x³ + 3x² - 6 - ( x³ + 5x² + 3x - 1)
h(x) = 4x⁴ - 2x³ + 3x² - 6 - x³ - 5x² - 3x + 1
h(x) = 4x⁴ - 2x³ - x³ + 3x² - 5x² - 3x - 6 + 1
h(x) = 4x⁴ - 3x³ - 2x² - 3x - 5
[tex]\begin{aligned}\displaystyle\tt~ h(x) & =\displaystyle\tt~ {4x}^{4} - {3x}^{3} - {2x}^{2} - 3x - 5 \\ \displaystyle\tt~ h'(x) & =\displaystyle\tt~4.4 {x}^{4 - 1} - 3.3 {x}^{3 - 1} - 2.2 {x}^{2 - 1} - 1.3 {x}^{1 - 1} - 0 \\ \displaystyle\tt~ h'(x) & =\displaystyle\tt~ {16x}^{3} - {9x}^{2} - 4x - 3 \end{aligned}[/tex]
Jadi, turunan pertama fungsi h adalah h'(x) = 16x³ - 9x² - 4x - 3