Materi : Bentuk dan Persamaan kuadrat
x² - 4x + 2 = 4x² + 12x + 9
3x² + 16x + 11 = 0
[ Metode Rumus ABC / Kuadratik ]
x = ( b ± √[ b² - 4ac ] )/2a
x = ( 16 ± √[ 16² - 4(3)(11) ] )/2a
x = ( 16 ± √[ 256 - 132 ] )/2(3)
x = ( 16 ± √[ 124 ] )/6
x = ( 16 ± 2√31 )/6
Himpunan Penyelesaian
x = ⅓( 8 + √31 )
x = ⅓( 8 - √31 )
3x² + x - 12 - 5 - 2 = 0
3x² + x + 19 = 0
x = ( 1 ± √[ 1² - 4(3)(19) ] )/2a
x = ( 1 ± √[ 1 - 228 ] )/2(3)
x = ( 1 ± √[ -227 ] )/6
x = ( 1 ± √[-1] . √227 )/6
x = ⅙( 1 + i√227 )
x = ⅙( 1 - i√227 )
x² + x - 2 = 3x² + 13x + 12
2x² + 12x + 14 = 0
x = ( 12 ± √[ 12² - 4(2)(14) ] )/2a
x = ( 12 ± √[ 144 - 112 ] )/2(2)
x = ( 12 ± √32 )/4
x = ( 12 ± 4√2 )/4
x = 3 + √2
x = 3 - √2
Semoga bisa membantu
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Materi : Bentuk dan Persamaan kuadrat
1. ( x - 2 )² = ( 2x + 3 )²
x² - 4x + 2 = 4x² + 12x + 9
3x² + 16x + 11 = 0
[ Metode Rumus ABC / Kuadratik ]
x = ( b ± √[ b² - 4ac ] )/2a
x = ( 16 ± √[ 16² - 4(3)(11) ] )/2a
x = ( 16 ± √[ 256 - 132 ] )/2(3)
x = ( 16 ± √[ 124 ] )/6
x = ( 16 ± 2√31 )/6
Himpunan Penyelesaian
x = ⅓( 8 + √31 )
x = ⅓( 8 - √31 )
2. - 5 + 3( x² - 4 ) = - x + 2
3x² + x - 12 - 5 - 2 = 0
3x² + x + 19 = 0
[ Metode Rumus ABC / Kuadratik ]
x = ( b ± √[ b² - 4ac ] )/2a
x = ( 1 ± √[ 1² - 4(3)(19) ] )/2a
x = ( 1 ± √[ 1 - 228 ] )/2(3)
x = ( 1 ± √[ -227 ] )/6
x = ( 1 ± √[-1] . √227 )/6
Himpunan Penyelesaian
x = ⅙( 1 + i√227 )
x = ⅙( 1 - i√227 )
3. ( x + 2 )( x - 1 ) = ( 3x + 4 )( x + 3 )
x² + x - 2 = 3x² + 13x + 12
2x² + 12x + 14 = 0
[ Metode Rumus ABC / Kuadratik ]
x = ( b ± √[ b² - 4ac ] )/2a
x = ( 12 ± √[ 12² - 4(2)(14) ] )/2a
x = ( 12 ± √[ 144 - 112 ] )/2(2)
x = ( 12 ± √32 )/4
x = ( 12 ± 4√2 )/4
Himpunan Penyelesaian
x = 3 + √2
x = 3 - √2
Semoga bisa membantu