Jawab:
Penjelasan dengan langkah-langkah:
f(x) = x³ + 3x² - 45x
Minimum, maka interval turun
f' (x) < 0
3x² + 2 . 3x - 45 < 0
3x² + 6x - 45 < 0
x² + 2x - 15 < 0
(x + 5) . (x - 3) < 0
x - 3 < 0
x < 3
x + 5 > 0
x > -5
-5 < x
-5 < x < 3
Ambil x = 2
f(2) = 2³ + 3 . 2² - 45 . 2
f(2) = 8 + 12 - 90
f(2) = -70
Tidak ada di pilihan
Min saat f(x) = 0
f'(x) = 3x² + 6x - 45
3x² + 6x - 45 = 0
3(x + 5)(x - 3) = 0
(x + 5)(x - 3) = 0
x = -5 ; x = 3
Karena pada int 0 ≤ x ≤ 4
maka x = 3
f(3) = (3)³ + 3(3)² - 45(3)
= 27 + 27 - 135
= -81
opsi B
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
f(x) = x³ + 3x² - 45x
Minimum, maka interval turun
f' (x) < 0
3x² + 2 . 3x - 45 < 0
3x² + 6x - 45 < 0
x² + 2x - 15 < 0
(x + 5) . (x - 3) < 0
x - 3 < 0
x < 3
x + 5 > 0
x > -5
-5 < x
-5 < x < 3
Ambil x = 2
f(x) = x³ + 3x² - 45x
f(2) = 2³ + 3 . 2² - 45 . 2
f(2) = 8 + 12 - 90
f(2) = -70
Tidak ada di pilihan
Penjelasan dengan langkah-langkah:
f(x) = x³ + 3x² - 45x
Min saat f(x) = 0
f'(x) = 3x² + 6x - 45
3x² + 6x - 45 = 0
3(x + 5)(x - 3) = 0
(x + 5)(x - 3) = 0
x = -5 ; x = 3
Karena pada int 0 ≤ x ≤ 4
maka x = 3
f(x) = x³ + 3x² - 45x
f(3) = (3)³ + 3(3)² - 45(3)
= 27 + 27 - 135
= -81
opsi B