Jawab:
limt trigonometrti
i) substitusi nilai variabel
ii) jika hasil tak tentu , dgn faktor / identitas
Penjelasan dengan langkah-langkah:
5) lim(x --> π/3) [ 2x + sin 1/2x ] / [ cos 2x ]
sub x = π/3
L = [ 2.(π/3) + sin 1/2 (π/3) ] / [ cos 2 (π/3)]
L = [ 2π/3 + sin π/6 ] / [ cos 2π/3 ]
..
sin π/6 = sin 30 = 1/2
cos 2π/3 = cos 120 = - cos 60 = - 1/2 .
.
L = [ 2π/3 + sin π/6 ] / [ cos 2π/3
L = [ 2π/3 + 1/2 ] / [ - 1/2 ]
L = - 2 [ 2π/3 + 1/2 ]
L = - 4π/3 - 1 atau L = - 1 - 4π/3
6) lim (x-> π) [ sin x cos x - sin² x ] / [ tan x ]
= lim(x -> π) [ sin x (cos x - sin x)] / (tan x)
= lim(x-> π ) sin x/ tanx . { cos x - sin x}
= lim (x -> π) cos x - sin x
= cos π - sin π
= -1 - 0
= - 1
7) lim(x-> π/4) [ 1 - tan x ] / [ sin x - cos x] =
= lim (x -> π/4) [ cos x ( 1 - sin x/ cos x ) ] / cos x [ sin x -cos x]
= lim (x -> π/4) [ cos x - sin x ]/ - cos x [ cos x - sin x ]
= lim(x-> π/4 ) = 1/ (- cos x)
L = 1/cos π/4 = 1/ (1/2 √2)
L = 2/√2 = √2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
limt trigonometrti
i) substitusi nilai variabel
ii) jika hasil tak tentu , dgn faktor / identitas
Penjelasan dengan langkah-langkah:
5) lim(x --> π/3) [ 2x + sin 1/2x ] / [ cos 2x ]
sub x = π/3
L = [ 2.(π/3) + sin 1/2 (π/3) ] / [ cos 2 (π/3)]
L = [ 2π/3 + sin π/6 ] / [ cos 2π/3 ]
..
sin π/6 = sin 30 = 1/2
cos 2π/3 = cos 120 = - cos 60 = - 1/2 .
.
L = [ 2π/3 + sin π/6 ] / [ cos 2π/3
L = [ 2π/3 + 1/2 ] / [ - 1/2 ]
L = - 2 [ 2π/3 + 1/2 ]
L = - 4π/3 - 1 atau L = - 1 - 4π/3
.
6) lim (x-> π) [ sin x cos x - sin² x ] / [ tan x ]
= lim(x -> π) [ sin x (cos x - sin x)] / (tan x)
= lim(x-> π ) sin x/ tanx . { cos x - sin x}
= lim (x -> π) cos x - sin x
= cos π - sin π
= -1 - 0
= - 1
.
7) lim(x-> π/4) [ 1 - tan x ] / [ sin x - cos x] =
= lim (x -> π/4) [ cos x ( 1 - sin x/ cos x ) ] / cos x [ sin x -cos x]
= lim (x -> π/4) [ cos x - sin x ]/ - cos x [ cos x - sin x ]
= lim(x-> π/4 ) = 1/ (- cos x)
L = 1/cos π/4 = 1/ (1/2 √2)
L = 2/√2 = √2