1. u = 3x² + 1 v = x³ + 2x - 5
u' = 3.2x²⁻¹ v' = 3x³⁻¹ + 2
= 6x = 3x² + 2
y' = u' v + u v'
= 6x( x³ + 2x - 5 ) + ( 3x² + 1 ) ( 3x² + 2 )
= 6x⁴ + 12x² - 30x + 9x⁴ + 9x² + 2
= 15x⁴ + 21x² - 30x + 2
2. u = x² + 3 v = 2x² + 1
u' = 2x²⁻¹ v' = 2.2x²⁻¹
= 2x = 4x
y' = u' v - u v' / v²
Turunan dari
f(x) = axⁿ
= anxⁿ⁻¹
f(x) = (3x²+1)(x³+2x-5)
= 3x²(x³+2x-5) + 1(x³+2x-5)
= 3x⁵+6x³-15x²+x³+2x-5
= 3x⁵+7x³-15x²+2x-5
F'(x) = 15x⁴+21x²-30x+2
f(x) = (x²+3)/(2x²+1)
u = x²+3
u' = 2x
v = 2x²+1
v' = 4x
turunan dari u/v = (u'v-uv')/v²
= (2x(2x²+1)-(x²+3)(4x))/(2x²+1)²
= (4x³+2x-4x³-12x)/(2x²+1)²
= -10x/(2x²+1)²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1. u = 3x² + 1 v = x³ + 2x - 5
u' = 3.2x²⁻¹ v' = 3x³⁻¹ + 2
= 6x = 3x² + 2
y' = u' v + u v'
= 6x( x³ + 2x - 5 ) + ( 3x² + 1 ) ( 3x² + 2 )
= 6x⁴ + 12x² - 30x + 9x⁴ + 9x² + 2
= 15x⁴ + 21x² - 30x + 2
2. u = x² + 3 v = 2x² + 1
u' = 2x²⁻¹ v' = 2.2x²⁻¹
= 2x = 4x
y' = u' v - u v' / v²
Turunan dari
f(x) = axⁿ
= anxⁿ⁻¹
f(x) = (3x²+1)(x³+2x-5)
= 3x²(x³+2x-5) + 1(x³+2x-5)
= 3x⁵+6x³-15x²+x³+2x-5
= 3x⁵+7x³-15x²+2x-5
F'(x) = 15x⁴+21x²-30x+2
f(x) = (x²+3)/(2x²+1)
u = x²+3
u' = 2x
v = 2x²+1
v' = 4x
turunan dari u/v = (u'v-uv')/v²
= (2x(2x²+1)-(x²+3)(4x))/(2x²+1)²
= (4x³+2x-4x³-12x)/(2x²+1)²
= -10x/(2x²+1)²