✰ Bentuk umum persamaan garis lurus (PGL) adalah :
dan,
Dengan :
✰ Jika diketahui dua buah titik [tex]\rm (x_1,~y_1)[/tex] dan [tex]\rm (x_2,~y_2)[/tex] , maka persamaan garisnya adalah :
· · · ✧ · · ·
❐ NO. (3)
Diketahui [tex]\rm (x_1,~y_1) = (-3,~5)[/tex] dan [tex] \rm (x_2,~y_2) = (3,~-7)[/tex] , maka :
[tex] \displaystyle\rm \dfrac{y - y_1}{y_2 - y_1} = \dfrac{x - x_1}{x_2 - x_1}[/tex]
[tex]\displaystyle\rm \frac{y - 5}{ - 7 - 5} = \frac{x - ( - 3)}{3 - ( - 3)} [/tex]
[tex]\displaystyle\rm \frac{y - 5}{ - 12} = \frac{x + 3}{ 6} [/tex]
[tex]\displaystyle\rm 6(y - 5) = - 12(x + 3)[/tex]
[tex]\displaystyle\rm 6y - 30 = - 12x - 36[/tex]
(bagi kedua ruas dengan 6)
[tex]\displaystyle\rm y - 5 = - 2x - 6[/tex]
[tex]\displaystyle\rm y = - 2x - 6 + 5[/tex]
✰ [tex]\displaystyle\red{\underline{\blue{\boxed{\green{\bf y = - 2x - 1}}}}}[/tex] ✰
Atau,
✰ [tex]\displaystyle\red{\underline{\green{\boxed{\blue{\bf 2x + y + 1 = 0} }}}}[/tex] ✰
❐ NO. (4)
Diketahui [tex]\rm (x_1,~y_1) = (3,~7)[/tex] dan [tex] \rm (x_2,~y_2) = (2,~-4)[/tex] , maka :
[tex] \displaystyle \rm \frac{y - 7}{ - 4 - 7} = \frac{x - 3}{2 - 3} [/tex]
[tex]\displaystyle \rm \frac{y - 7}{ - 11} = \frac{x - 3}{ - 1} [/tex]
[tex]\displaystyle \rm - 1(y - 7) = - 11(x - 3)[/tex]
[tex]\displaystyle \rm - y + 7 = - 11x + 33[/tex]
[tex]\displaystyle \rm y - 7 = 11x - 33[/tex]
[tex]\displaystyle \rm y = 11x - 33 + 7[/tex]
✰ [tex]\displaystyle\red{\underline{\pink{\boxed{\purple{ \bf y = 11x - 26}}}}}[/tex] ✰
✰ [tex]\displaystyle\red{ \underline{\purple{\boxed{\pink{\bf 11x - y - 26 = 0}}}}}[/tex] ✰
❐ NO. (5)
Diketahui [tex]\rm (x_1,~y_1) = (\frac{1}{2},~-\frac{1}{2})[/tex] dan [tex] \rm (x_2,~y_2) = (2,~1)[/tex] , maka :
[tex]\displaystyle\rm \frac{y - ( - \frac{1}{2} )}{1 - ( - \frac{1}{2}) } = \frac{x - \frac{1}{2} }{2 - \frac{1}{2} } [/tex]
[tex]\displaystyle\rm \frac{y + \frac{1}{2} }{ \frac{3}{2} } = \frac{x - \frac{1}{2} }{ \frac{3}{2} } [/tex]
[tex]\displaystyle\rm \cancel{ \frac{3}{2} }\bigg(y + \frac{1}{2} \bigg) = \cancel{ \frac{3}{2}} \bigg(x - \frac{1}{2} \bigg)[/tex]
[tex]\displaystyle\rm y + \frac{1}{2} = x - \frac{1}{2} [/tex]
[tex]\displaystyle\rm y = x - \frac{1}{2} - \frac{1}{2} [/tex]
✰ [tex]\displaystyle\red{\underline{\blue{\boxed{\purple{\bf y = x - 1}}}}}[/tex] ✰
✰ [tex]\displaystyle\red{\underline{\purple{\boxed{\blue{\bf x - y - 1 = 0}}}}}[/tex] ✰
________________________________
[tex]~[/tex]
[tex]~~~~~~~~~~~~~~~~~~~~~[/tex]· · – ƙყℓ – · ·
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
–» Persamaan Garis Lurus «–
✰ Bentuk umum persamaan garis lurus (PGL) adalah :
dan,
Dengan :
✰ Jika diketahui dua buah titik [tex]\rm (x_1,~y_1)[/tex] dan [tex]\rm (x_2,~y_2)[/tex] , maka persamaan garisnya adalah :
· · · ✧ · · ·
˗ˏˋ Penyelesaian ´ˎ˗
❐ NO. (3)
Diketahui [tex]\rm (x_1,~y_1) = (-3,~5)[/tex] dan [tex] \rm (x_2,~y_2) = (3,~-7)[/tex] , maka :
[tex] \displaystyle\rm \dfrac{y - y_1}{y_2 - y_1} = \dfrac{x - x_1}{x_2 - x_1}[/tex]
[tex]\displaystyle\rm \frac{y - 5}{ - 7 - 5} = \frac{x - ( - 3)}{3 - ( - 3)} [/tex]
[tex]\displaystyle\rm \frac{y - 5}{ - 12} = \frac{x + 3}{ 6} [/tex]
[tex]\displaystyle\rm 6(y - 5) = - 12(x + 3)[/tex]
[tex]\displaystyle\rm 6y - 30 = - 12x - 36[/tex]
(bagi kedua ruas dengan 6)
[tex]\displaystyle\rm y - 5 = - 2x - 6[/tex]
[tex]\displaystyle\rm y = - 2x - 6 + 5[/tex]
✰ [tex]\displaystyle\red{\underline{\blue{\boxed{\green{\bf y = - 2x - 1}}}}}[/tex] ✰
Atau,
✰ [tex]\displaystyle\red{\underline{\green{\boxed{\blue{\bf 2x + y + 1 = 0} }}}}[/tex] ✰
· · · ✧ · · ·
❐ NO. (4)
Diketahui [tex]\rm (x_1,~y_1) = (3,~7)[/tex] dan [tex] \rm (x_2,~y_2) = (2,~-4)[/tex] , maka :
[tex] \displaystyle\rm \dfrac{y - y_1}{y_2 - y_1} = \dfrac{x - x_1}{x_2 - x_1}[/tex]
[tex] \displaystyle \rm \frac{y - 7}{ - 4 - 7} = \frac{x - 3}{2 - 3} [/tex]
[tex]\displaystyle \rm \frac{y - 7}{ - 11} = \frac{x - 3}{ - 1} [/tex]
[tex]\displaystyle \rm - 1(y - 7) = - 11(x - 3)[/tex]
[tex]\displaystyle \rm - y + 7 = - 11x + 33[/tex]
[tex]\displaystyle \rm y - 7 = 11x - 33[/tex]
[tex]\displaystyle \rm y = 11x - 33 + 7[/tex]
✰ [tex]\displaystyle\red{\underline{\pink{\boxed{\purple{ \bf y = 11x - 26}}}}}[/tex] ✰
Atau,
✰ [tex]\displaystyle\red{ \underline{\purple{\boxed{\pink{\bf 11x - y - 26 = 0}}}}}[/tex] ✰
· · · ✧ · · ·
❐ NO. (5)
Diketahui [tex]\rm (x_1,~y_1) = (\frac{1}{2},~-\frac{1}{2})[/tex] dan [tex] \rm (x_2,~y_2) = (2,~1)[/tex] , maka :
[tex] \displaystyle\rm \dfrac{y - y_1}{y_2 - y_1} = \dfrac{x - x_1}{x_2 - x_1}[/tex]
[tex]\displaystyle\rm \frac{y - ( - \frac{1}{2} )}{1 - ( - \frac{1}{2}) } = \frac{x - \frac{1}{2} }{2 - \frac{1}{2} } [/tex]
[tex]\displaystyle\rm \frac{y + \frac{1}{2} }{ \frac{3}{2} } = \frac{x - \frac{1}{2} }{ \frac{3}{2} } [/tex]
[tex]\displaystyle\rm \cancel{ \frac{3}{2} }\bigg(y + \frac{1}{2} \bigg) = \cancel{ \frac{3}{2}} \bigg(x - \frac{1}{2} \bigg)[/tex]
[tex]\displaystyle\rm y + \frac{1}{2} = x - \frac{1}{2} [/tex]
[tex]\displaystyle\rm y = x - \frac{1}{2} - \frac{1}{2} [/tex]
✰ [tex]\displaystyle\red{\underline{\blue{\boxed{\purple{\bf y = x - 1}}}}}[/tex] ✰
Atau,
✰ [tex]\displaystyle\red{\underline{\purple{\boxed{\blue{\bf x - y - 1 = 0}}}}}[/tex] ✰
________________________________
[tex]~[/tex]
[tex]~~~~~~~~~~~~~~~~~~~~~[/tex]· · – ƙყℓ – · ·