3. V = V kubus + V balok
= s³ + plt
= 12³ + (20 x 12 x 12)
= 1728 + 2880
= 4608 cm³
4. V = V prisma segitiga + V balok
= (2 x 1/2 at x t prisma) + plt
= (at x t prisma) + plt
= (8 x 8 x 12) + (16 x 12 x 8)
= 768 + 1536
= 2304 cm³
5. jari-jari (r) = 27 - 20 = 7 cm
V = V setengah bola + V tabung
= 2/3 πr² + πr²t
= (2/3 x 22/7 x 7²) + (22/7 x 7² x 20)
= (44/3 x 7) + (22 x 7 x 20)
= 102,67 + 3080
= 3182,67 cm³
6. t limas = √(18² - 9²) = √(324 - 81) = √243 = 9√3 = 15,59 cm
V = V limas segiempat + V kubus
= 1/3 x s² x t limas + s³
= 1/3 x 18² x 15,59 + 18³
= 1/3 x 324 x 15,59 + 5832
= 1683,72 + 5832
= 7515,72 cm³
7. t kerucut = √(s² - r²) = √(25² - 7²) = √(625 - 49) = √576 = 24 cm
V = 2 x V kerucut + V tabung
= 2 x 1/3 πr²t + πr²t
= (2 x 1/3 x 22/7 x 7² x 24) + (22/7 x 7² x 20)
= (44 x 7 x 8) + (22 x 7 x 20)
= 2464 + 3080
= 5544 cm³
8. V = V balok 1 + V balok 2
= plt + plt
= (18 x 5 x 6) + (12 x 5 x 5)
= 540 + 300
= 840 cm³
[tex]\boxed{\sf{shf}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Volume Bangun Ruang
3. V = V kubus + V balok
= s³ + plt
= 12³ + (20 x 12 x 12)
= 1728 + 2880
= 4608 cm³
4. V = V prisma segitiga + V balok
= (2 x 1/2 at x t prisma) + plt
= (at x t prisma) + plt
= (8 x 8 x 12) + (16 x 12 x 8)
= 768 + 1536
= 2304 cm³
5. jari-jari (r) = 27 - 20 = 7 cm
V = V setengah bola + V tabung
= 2/3 πr² + πr²t
= (2/3 x 22/7 x 7²) + (22/7 x 7² x 20)
= (44/3 x 7) + (22 x 7 x 20)
= 102,67 + 3080
= 3182,67 cm³
6. t limas = √(18² - 9²) = √(324 - 81) = √243 = 9√3 = 15,59 cm
V = V limas segiempat + V kubus
= 1/3 x s² x t limas + s³
= 1/3 x 18² x 15,59 + 18³
= 1/3 x 324 x 15,59 + 5832
= 1683,72 + 5832
= 7515,72 cm³
7. t kerucut = √(s² - r²) = √(25² - 7²) = √(625 - 49) = √576 = 24 cm
V = 2 x V kerucut + V tabung
= 2 x 1/3 πr²t + πr²t
= (2 x 1/3 x 22/7 x 7² x 24) + (22/7 x 7² x 20)
= (44 x 7 x 8) + (22 x 7 x 20)
= 2464 + 3080
= 5544 cm³
8. V = V balok 1 + V balok 2
= plt + plt
= (18 x 5 x 6) + (12 x 5 x 5)
= 540 + 300
= 840 cm³
[tex]\boxed{\sf{shf}}[/tex]