Jawab:
limit trigonometri bentuk tak tentu
Penjelasan dengan langkah-langkah:
lim(x-> π/2) (tan 2x ) / ( sin 2x - cos 3x )
misal t = x - π/2
i) x = π/2 + t
ii) x = π/2 --> t = 0
.
lim(x-> π/2) (tan 2x ) / ( sin 2x - cos 3x )=
= lim(t ->0) [tan 2 (π/2 + t) } / [ sin 2(π/2 + t) - cos 3(π/2 + t)]
= lim(t ->0) [tan (π + 2t) } / [ sin (π + 2t) - cos (3π/2 + 3t)]
= lim(t ->0) [tan (2t) } / [ - sin (2t) -sin (3t)]
= (2t)/ ( - 2t - 3t)
= 2t /-5t
= -2/5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
limit trigonometri bentuk tak tentu
Penjelasan dengan langkah-langkah:
lim(x-> π/2) (tan 2x ) / ( sin 2x - cos 3x )
misal t = x - π/2
i) x = π/2 + t
ii) x = π/2 --> t = 0
.
lim(x-> π/2) (tan 2x ) / ( sin 2x - cos 3x )=
= lim(t ->0) [tan 2 (π/2 + t) } / [ sin 2(π/2 + t) - cos 3(π/2 + t)]
= lim(t ->0) [tan (π + 2t) } / [ sin (π + 2t) - cos (3π/2 + 3t)]
= lim(t ->0) [tan (2t) } / [ - sin (2t) -sin (3t)]
= (2t)/ ( - 2t - 3t)
= 2t /-5t
= -2/5