Materi : Fungsi dan Relasi
f(x) = 2x + 3
g(x) = x² - 1
h(x) = - x² + 2
__________/
( f o g o h )(x) = f(g(h(x)))
= ( - x² + 2 )² - 1
= x⁴ - 4x² + 4 - 1
= x⁴ - 4x² + 3
= 2( x⁴ - 4x² + 3 ) + 3
= 2x⁴ - 8x² + 6 + 3
= 2x⁴ - 8x² + 9
y = 2x⁴ - 8x² + 9
y = 2( x⁴ - 4x² + 3 ) + 3
y = 2( x⁴ - 4x² + 4 - 1 ) + 3
y = 2( [ - x² + 2 ]² - 1 ) + 3
y = 2( - x² + 2 )² - 2 + 3
2( - x² + 2 )² = y - 1
( - x² + 2 )² = ( y - 1 )/2
- x² + 2 = ± √[ ( y - 1 )/2 ]
x² = 2 - ( ± √[ y - 1 )/2 ] )
x = ± √( 2 - ( ± √{ [ y - 1 ]/2 } ) )
---
( f o g o h )-¹(x) = ± √( 2 - ( ± √{ [ x - 1 ]/2 } ) )
( f o g o h )-¹(1) = ± √( 2 - ( ± √{ [ 1 - 1 ]/2 } ) )
( f o g o h )-¹(1) = ± √( 2 - ( ± √(0/2) ) )
( f o g o h )-¹(1) = ± √( 2 - ( ± 0 ) )
( f o g o h )-¹(1) = ± √2
Himpunan Penyelesaian
Jika x = 1
Maka kemungkinan nilai y :
y = (+) √2 = √2
y = (-) √2 = -√2
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
(f o g o h)=f(g(h(x)))
g(h(x))
(-x²+2)²-1
=(-x²+2)(-x²+2)-1
=x⁴-4x²+4-1
=x⁴-4x²+3
.
f(x⁴-4x²+3)
2(x⁴-4x²+3)+3
=2x⁴-8x²+6+3
=2x⁴-8x²+9
inversikan
y=2x⁴-8x²+9
y=2(x⁴-4x²+3)+3
y=2(x⁴-4x²+4-1)+3
y=2(x²-4x²+4)-2+3
y=2((-x²+2)²)+1
y-1=2(-x²+2)²
(y-1)/2=(-x²+2)²
±√(y-1)/2=-x²+2
x²=2 - (±√(y-1)/2)
x = ± √ 2 - ( ± √ ( y - 1 ) / 2 )
y-¹= ± √ 2 - ( ± √ ( x - 1 ) / 2 )
Pada nilai x=1
± √ 2 - ( ± √ ( x - 1 ) / 2 )
± √ 2 - ( ± √ ( 1 - 1 ) / 2 )
± √ 2 - ( ± √ 0 / 2 )
± √ 2 - ( ± 0 )
± √ 2
Maka HP={ -√2 , √ 2 }
semoga bermanfaat
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Materi : Fungsi dan Relasi
f(x) = 2x + 3
g(x) = x² - 1
h(x) = - x² + 2
__________/
( f o g o h )(x) = f(g(h(x)))
g(h(x)) = g( - x² + 2 )
= ( - x² + 2 )² - 1
= x⁴ - 4x² + 4 - 1
= x⁴ - 4x² + 3
f(g(h(x))) = f( x⁴ - 4x² + 3 )
= 2( x⁴ - 4x² + 3 ) + 3
= 2x⁴ - 8x² + 6 + 3
= 2x⁴ - 8x² + 9
( f o g o h )-¹(x)
y = 2x⁴ - 8x² + 9
y = 2( x⁴ - 4x² + 3 ) + 3
y = 2( x⁴ - 4x² + 4 - 1 ) + 3
y = 2( [ - x² + 2 ]² - 1 ) + 3
y = 2( - x² + 2 )² - 2 + 3
2( - x² + 2 )² = y - 1
( - x² + 2 )² = ( y - 1 )/2
- x² + 2 = ± √[ ( y - 1 )/2 ]
x² = 2 - ( ± √[ y - 1 )/2 ] )
x = ± √( 2 - ( ± √{ [ y - 1 ]/2 } ) )
---
( f o g o h )-¹(x) = ± √( 2 - ( ± √{ [ x - 1 ]/2 } ) )
( f o g o h )-¹(1) = ± √( 2 - ( ± √{ [ 1 - 1 ]/2 } ) )
( f o g o h )-¹(1) = ± √( 2 - ( ± √(0/2) ) )
( f o g o h )-¹(1) = ± √( 2 - ( ± 0 ) )
( f o g o h )-¹(1) = ± √2
Himpunan Penyelesaian
Jika x = 1
Maka kemungkinan nilai y :
y = (+) √2 = √2
y = (-) √2 = -√2
---
Semoga bisa membantu
[tex] \boxed{ \colorbox{darkblue}{ \sf{ \color{lightblue}{ answered\:by\: BLUEBRAXGEOMETRY}}}} [/tex]
Jawaban:
(f o g o h)=f(g(h(x)))
g(h(x))
(-x²+2)²-1
=(-x²+2)(-x²+2)-1
=x⁴-4x²+4-1
=x⁴-4x²+3
.
f(x⁴-4x²+3)
2(x⁴-4x²+3)+3
=2x⁴-8x²+6+3
=2x⁴-8x²+9
.
inversikan
y=2x⁴-8x²+9
y=2(x⁴-4x²+3)+3
y=2(x⁴-4x²+4-1)+3
y=2(x²-4x²+4)-2+3
y=2((-x²+2)²)+1
y-1=2(-x²+2)²
(y-1)/2=(-x²+2)²
±√(y-1)/2=-x²+2
x²=2 - (±√(y-1)/2)
x = ± √ 2 - ( ± √ ( y - 1 ) / 2 )
y-¹= ± √ 2 - ( ± √ ( x - 1 ) / 2 )
Pada nilai x=1
± √ 2 - ( ± √ ( x - 1 ) / 2 )
± √ 2 - ( ± √ ( 1 - 1 ) / 2 )
± √ 2 - ( ± √ 0 / 2 )
± √ 2 - ( ± 0 )
± √ 2
Maka HP={ -√2 , √ 2 }
semoga bermanfaat