1). (-6,11) --> x = -6 dan y = 11
Persamaan garis tegak lurus
[tex]1).2x - 3y = 7 \\ - 2y - 3x = - 2(11) - 3( - 6) \\ - 3x - 2y = - 22 + 18 \\ - 3x - 2y = - 4 \\ - 3x - 2y + 4 = 0 \\ - - - - - - - - - \times - \\ 3x + 2y - 4 = 0 \\ \\ 2).gradien \: garis \\ m = \frac{y2 - y1}{x2 - x1} = \frac{6 - ( - 4)}{4 - 2} \\ \\ m1 = \frac{6 + 4}{2} = \frac{10}{2} = 5 \\ \\ tegak \: lurus \\ m1 \times m2 = - 1 \\ 5 \times m2 = - 1 \\ m2 = - \frac{1}{5} \\ \\ persamaan \: garis \\ y - y1 = m(x - x1) \\ y - ( - 12) = - \frac{1}{5} (x - ( - 8)) \\ y + 12 = - \frac{1}{5} (x + 8) \\ - - - - - - - - - - \times 5 \\ 5y + 60 = - x - 8 \\ x + 5y + 60 + 8 = 0 \\ x + 5y + 68 = 0[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1). (-6,11) --> x = -6 dan y = 11
Persamaan garis tegak lurus
[tex]1).2x - 3y = 7 \\ - 2y - 3x = - 2(11) - 3( - 6) \\ - 3x - 2y = - 22 + 18 \\ - 3x - 2y = - 4 \\ - 3x - 2y + 4 = 0 \\ - - - - - - - - - \times - \\ 3x + 2y - 4 = 0 \\ \\ 2).gradien \: garis \\ m = \frac{y2 - y1}{x2 - x1} = \frac{6 - ( - 4)}{4 - 2} \\ \\ m1 = \frac{6 + 4}{2} = \frac{10}{2} = 5 \\ \\ tegak \: lurus \\ m1 \times m2 = - 1 \\ 5 \times m2 = - 1 \\ m2 = - \frac{1}{5} \\ \\ persamaan \: garis \\ y - y1 = m(x - x1) \\ y - ( - 12) = - \frac{1}{5} (x - ( - 8)) \\ y + 12 = - \frac{1}{5} (x + 8) \\ - - - - - - - - - - \times 5 \\ 5y + 60 = - x - 8 \\ x + 5y + 60 + 8 = 0 \\ x + 5y + 68 = 0[/tex]