vektor posisi suatu benda dapat dinyatakan oleh r=(2t²+3t)i+(1+2t³)j m. t dlm sekon dan r dlm meter. tentukan 1)besar dan arah perpindahan benda dari t=2 s sampai t=4s 2) besar dan arah kecepatan rata2 dari t=2s sampai t=4s 3) tentukan persamaan kecepatan dan kecepatan mobil saat t=2s
triyati28
1) r = (2t²+3t) i + (1+2t³) j t = 2s ~ r(t) = (2t²+3t) i + (1+2t³) j r(2) = (2.2²+3.2) i + (1+2.2³) j r(2) = 14 i + 17 j
t = 4s ~ r(t) = (2t²+3t) i + (1+2t³) j r(4) = (2.4²+3.4) i + (1+2.4³) j r(4) = 44 i + 129 j
- vektor perpindahan Δr = r₂-r₁ = (44-14) i + (129-17) j Δr = 30 i + 112 j
- besar perpindahan |Δr| = √(30)²+(112)² = √900+12.544 = √13.444 = 115,94 meter
- arah perpindahan tan Ф = Δy/Δx = 112/30 = 3,733 Ф = 75,00
2) v = dr/dt = d(2t²+3t) i + (1+2t³) j v = (4t+3) i + 6t² j
t = 2s v(t) = (4t+3) i + 6t² j v(2) = (4.2+3) i + 6.2² j v(2) = 11 i + 10 j
t = 4s v(4) = (4.4+3) i + 6.4² j v(4) = 19 i + 22 j
- vektor perpindahan Δr = r₂-r₁ = (19-11) i + (22-10) j Δr = 8 i + 2 j meter
- besar kecepatan |Δr| = √8²+2² = √64+4 = √68 = 8,24 meter -arah perpindahan tan Ф = 2/8 = 0.25 Ф = 14.03
t = 2s
~ r(t) = (2t²+3t) i + (1+2t³) j
r(2) = (2.2²+3.2) i + (1+2.2³) j
r(2) = 14 i + 17 j
t = 4s
~ r(t) = (2t²+3t) i + (1+2t³) j
r(4) = (2.4²+3.4) i + (1+2.4³) j
r(4) = 44 i + 129 j
- vektor perpindahan
Δr = r₂-r₁
= (44-14) i + (129-17) j
Δr = 30 i + 112 j
- besar perpindahan
|Δr| = √(30)²+(112)²
= √900+12.544
= √13.444
= 115,94 meter
- arah perpindahan
tan Ф = Δy/Δx
= 112/30 = 3,733
Ф = 75,00
2) v = dr/dt
= d(2t²+3t) i + (1+2t³) j
v = (4t+3) i + 6t² j
t = 2s
v(t) = (4t+3) i + 6t² j
v(2) = (4.2+3) i + 6.2² j
v(2) = 11 i + 10 j
t = 4s
v(4) = (4.4+3) i + 6.4² j
v(4) = 19 i + 22 j
- vektor perpindahan
Δr = r₂-r₁
= (19-11) i + (22-10) j
Δr = 8 i + 2 j meter
- besar kecepatan
|Δr| = √8²+2²
= √64+4
= √68 = 8,24 meter
-arah perpindahan
tan Ф = 2/8
= 0.25
Ф = 14.03
yang no.3 kerjakan sendiri,, :)