Jawaban:
[tex]{( {x}^{2} + {y}^{2} - 1)}^{3} - {x}^{2} {y}^{3} = 0[/tex]
[tex]{( {x}^{2} + {y}^{2} - 1)}^{3} = {x}^{2} {y}^{3} [/tex]
[tex]{( {x}^{2} + {y}^{2} - 1)}^{3} = {({x}^{ \frac{2}{3} } y)}^{3} [/tex]
[tex]( {x}^{2} + {y}^{2} - 1)= {x}^{ \frac{2}{3} } y[/tex]
[tex] {x}^{2} + {y}^{2} - 1= \sqrt[3]{{x}^{2 }} \: y[/tex]
[tex] {x}^{2} + {y}^{2} - ( \sqrt[3]{ {x}^{2}} \: y) = 1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
[tex]{( {x}^{2} + {y}^{2} - 1)}^{3} - {x}^{2} {y}^{3} = 0[/tex]
[tex]{( {x}^{2} + {y}^{2} - 1)}^{3} = {x}^{2} {y}^{3} [/tex]
[tex]{( {x}^{2} + {y}^{2} - 1)}^{3} = {({x}^{ \frac{2}{3} } y)}^{3} [/tex]
[tex]( {x}^{2} + {y}^{2} - 1)= {x}^{ \frac{2}{3} } y[/tex]
[tex] {x}^{2} + {y}^{2} - 1= \sqrt[3]{{x}^{2 }} \: y[/tex]
[tex] {x}^{2} + {y}^{2} - ( \sqrt[3]{ {x}^{2}} \: y) = 1[/tex]