limit fungsi rasional
-
Rasionalisasi Penyebut.
[tex]\rm{\lim\limits_{x \to 4} \frac{x - 4}{\sqrt{x^{2} - 16}}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \frac{x - 4}{\sqrt{x^{2} - 16}} \times \frac{\sqrt{x^{2} - 16}}{\sqrt{x^{2} - 16}}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \frac{(4 - x)(\sqrt{x^{2} - 16})}{x^{2} - 16}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \frac{-\cancel{(x - 4)}(\sqrt{x^{2} - 16})}{\cancel{(x - 4)}(x + 4)}}[/tex]
[tex]\rm{L = -\frac{\sqrt{16 - 16}}{4 + 4}}[/tex]
[tex]\rm{L = 0}[/tex]
L'Hopital
[tex]\boxed{\rm{\lim\limits_{x \to a} \frac{f(x)}{g(x)} \leftrightarrow L = \frac{f'(a)}{g'(a)}}}[/tex]
maka,
[tex]\rm{\lim\limits_{x \to 4} \: \frac{1}{\frac{1}{2} (x^{2} - 16)^{-\frac{1}{2}} . 2x}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \: \sqrt{x^{2} - 16}}[/tex]
[tex]\rm{L = \sqrt{4^2 - 16}}[/tex]
_____
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
limit fungsi rasional
-
Rasionalisasi Penyebut.
[tex]\rm{\lim\limits_{x \to 4} \frac{x - 4}{\sqrt{x^{2} - 16}}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \frac{x - 4}{\sqrt{x^{2} - 16}} \times \frac{\sqrt{x^{2} - 16}}{\sqrt{x^{2} - 16}}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \frac{(4 - x)(\sqrt{x^{2} - 16})}{x^{2} - 16}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \frac{-\cancel{(x - 4)}(\sqrt{x^{2} - 16})}{\cancel{(x - 4)}(x + 4)}}[/tex]
[tex]\rm{L = -\frac{\sqrt{16 - 16}}{4 + 4}}[/tex]
[tex]\rm{L = 0}[/tex]
L'Hopital
[tex]\boxed{\rm{\lim\limits_{x \to a} \frac{f(x)}{g(x)} \leftrightarrow L = \frac{f'(a)}{g'(a)}}}[/tex]
maka,
[tex]\rm{\lim\limits_{x \to 4} \frac{x - 4}{\sqrt{x^{2} - 16}}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \: \frac{1}{\frac{1}{2} (x^{2} - 16)^{-\frac{1}{2}} . 2x}}[/tex]
[tex]\rm{\lim\limits_{x \to 4} \: \sqrt{x^{2} - 16}}[/tex]
[tex]\rm{L = \sqrt{4^2 - 16}}[/tex]
[tex]\rm{L = 0}[/tex]
_____