f(p, q) = q² – p².
Dari kedua persamaan kuadrat yang diberikan beserta akar-akarnya, dapat kita ambil bahwa:
sehingga:
[tex]\begin{aligned}f(p,q)&=\bf(a-c)(b-c)(a+d)(b+d)\\\vphantom{\Big|}&=\bf\left(ab-(a+b)c+c^2\right)\left(ab+(a+b)d+d^2\right)\\\vphantom{\Big|}&\ \ \rightarrow\left\{ab=1\,\land\,a+b=-p\right\}\\\vphantom{\Big|}&\bf=\left(1+pc+c^2\right)\left(1-pd+d^2\right)\\\vphantom{\Bigg|}&\ \ \rightarrow\left\{cd=1\ \Rightarrow\ c=\frac{1}{d}\,\land\,d=\frac{1}{c}\right\}\\\vphantom{\Bigg|}&\bf=\left(1+\frac{p}{d}+\frac{c}{d}\right)\left(1-\frac{p}{c}+\frac{d}{c}\right)\end{aligned}[/tex]
[tex]\begin{aligned}\vphantom{\Bigg|}&\bf=\left(\frac{c+d+p}{d}\right)\left(\frac{c+d-p}{c}\right)\\\vphantom{\Bigg|}&\bf=\frac{(c+d)^2-p^2}{cd}\\\vphantom{\Big|}&\ \ \rightarrow\left\{cd=1\,\land\,c+d=-q\right\}\\\vphantom{\Bigg|}&\bf=\frac{(-q)^2-p^2}{1}\\f(p,q)&=\boxed{\vphantom{\Big|}\bf\,q^2-p^2\,}\end{aligned}[/tex]
[tex]\overline{\begin{array}{l}\small\textsf{Duc In Altum}\\\small\text{bertolaklah\;ke\;tempat}\\\small\text{yang\;lebih\;dalam}\end{array}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
f(p, q) = q² – p².
Penjelasan dengan langkah-langkah:
Dari kedua persamaan kuadrat yang diberikan beserta akar-akarnya, dapat kita ambil bahwa:
sehingga:
[tex]\begin{aligned}f(p,q)&=\bf(a-c)(b-c)(a+d)(b+d)\\\vphantom{\Big|}&=\bf\left(ab-(a+b)c+c^2\right)\left(ab+(a+b)d+d^2\right)\\\vphantom{\Big|}&\ \ \rightarrow\left\{ab=1\,\land\,a+b=-p\right\}\\\vphantom{\Big|}&\bf=\left(1+pc+c^2\right)\left(1-pd+d^2\right)\\\vphantom{\Bigg|}&\ \ \rightarrow\left\{cd=1\ \Rightarrow\ c=\frac{1}{d}\,\land\,d=\frac{1}{c}\right\}\\\vphantom{\Bigg|}&\bf=\left(1+\frac{p}{d}+\frac{c}{d}\right)\left(1-\frac{p}{c}+\frac{d}{c}\right)\end{aligned}[/tex]
[tex]\begin{aligned}\vphantom{\Bigg|}&\bf=\left(\frac{c+d+p}{d}\right)\left(\frac{c+d-p}{c}\right)\\\vphantom{\Bigg|}&\bf=\frac{(c+d)^2-p^2}{cd}\\\vphantom{\Big|}&\ \ \rightarrow\left\{cd=1\,\land\,c+d=-q\right\}\\\vphantom{\Bigg|}&\bf=\frac{(-q)^2-p^2}{1}\\f(p,q)&=\boxed{\vphantom{\Big|}\bf\,q^2-p^2\,}\end{aligned}[/tex]
[tex]\overline{\begin{array}{l}\small\textsf{Duc In Altum}\\\small\text{bertolaklah\;ke\;tempat}\\\small\text{yang\;lebih\;dalam}\end{array}}[/tex]