Jawab:
[tex]= \lim_{x \to \infty} (x+2)-\sqrt{x^2+x-2} \\\\= \lim_{x \to \infty} (x+2)-\sqrt{x^2+x-2}\times \frac{(x+2)+\sqrt{x^2+x-2} \\}{(x+2)+\sqrt{x^2+x-2} \\} \\\\=\frac{(x^2+4x+4)-(x^2+x-2)}{ (x+2)+\sqrt{x^2+x-2}}\\\\ = \frac{3x+2}{x+2+\sqrt{x^2+x-2}}\\\\=\frac{3x}{x+\sqrt{x^2} } \\\\=\frac{3x}{x+x} \\\\=\frac{3x}{2x}\\\\=\frac{3}{2}[/tex]
[tex]\sf \lim\limits_{x \to \infty} ((x+2) -\sqrt{x^{2} +x-2} )\\\\=\lim\limits_{x \to \infty} (\sqrt{(x+2)^{2} } -\sqrt{x^{2} +x-2} )\\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +4x+4 } -\sqrt{x^{2} +x-2} )[/tex]
Jika bentuk [tex]\sf \lim\limits_{x \to \infty} (\sqrt{ax^{2}+bx+c } -\sqrt{px^{2} +qx+r} )[/tex] dengan a = p
Maka hasilnya [tex]\sf \frac{b-q}{2\sqrt{a} }[/tex] .
[tex]\sf\\=\frac{4-1}{2\sqrt{1} }\\\\=\frac{3}{2\cdot 1} \\\\\boxed{\sf =\frac{3}{2} }[/tex]
Jadi, hasil limit tak hingga tersebut adalah 3/2.
[tex]\boxed{\sf{shf}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
[tex]= \lim_{x \to \infty} (x+2)-\sqrt{x^2+x-2} \\\\= \lim_{x \to \infty} (x+2)-\sqrt{x^2+x-2}\times \frac{(x+2)+\sqrt{x^2+x-2} \\}{(x+2)+\sqrt{x^2+x-2} \\} \\\\=\frac{(x^2+4x+4)-(x^2+x-2)}{ (x+2)+\sqrt{x^2+x-2}}\\\\ = \frac{3x+2}{x+2+\sqrt{x^2+x-2}}\\\\=\frac{3x}{x+\sqrt{x^2} } \\\\=\frac{3x}{x+x} \\\\=\frac{3x}{2x}\\\\=\frac{3}{2}[/tex]
∞ Limit Tak Hingga ∞
[tex]\sf \lim\limits_{x \to \infty} ((x+2) -\sqrt{x^{2} +x-2} )\\\\=\lim\limits_{x \to \infty} (\sqrt{(x+2)^{2} } -\sqrt{x^{2} +x-2} )\\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +4x+4 } -\sqrt{x^{2} +x-2} )[/tex]
Jika bentuk [tex]\sf \lim\limits_{x \to \infty} (\sqrt{ax^{2}+bx+c } -\sqrt{px^{2} +qx+r} )[/tex] dengan a = p
Maka hasilnya [tex]\sf \frac{b-q}{2\sqrt{a} }[/tex] .
[tex]\sf\\=\frac{4-1}{2\sqrt{1} }\\\\=\frac{3}{2\cdot 1} \\\\\boxed{\sf =\frac{3}{2} }[/tex]
Jadi, hasil limit tak hingga tersebut adalah 3/2.
[tex]\boxed{\sf{shf}}[/tex]