Jawab:
[tex]\lim_{x \to \infty} \sqrt{x^{2} +x-2} -x-2\\\\ = \lim_{x \to \infty} (\sqrt{x^{2} +x-2}-x)- \lim_{x \to \infty} 2 \\\\= \frac{1}{2}- 2\\\\=-\frac{3}{2}[/tex]
[tex]\sf \lim\limits_{x \to \infty} \sqrt{x^{2} +x-2}-x-2\\\\=\lim\limits_{x \to \infty} \sqrt{x^{2} +x-2}-(x+2)\\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +x-2}-\sqrt{(x+2)^{2}} \\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +x-2}-\sqrt{x^{2}+4x+4}[/tex]
Jika bentuk [tex]\sf \lim\limits_{x \to \infty} (\sqrt{ax^{2}+bx+c } -\sqrt{px^{2} +qx+r} )[/tex] dengan a = p
Maka hasilnya [tex]\sf \frac{b-q}{2\sqrt{a} }[/tex] .
[tex]\sf\\=\frac{1-4}{2\sqrt{1} }\\\\=\frac{-3}{2\cdot 1} \\\\\boxed{\sf =-\frac{3}{2} }[/tex]
Jadi, hasil limit tak hingga tersebut adalah -3/2.
[tex]\boxed{\sf{shf}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawab:
[tex]\lim_{x \to \infty} \sqrt{x^{2} +x-2} -x-2\\\\ = \lim_{x \to \infty} (\sqrt{x^{2} +x-2}-x)- \lim_{x \to \infty} 2 \\\\= \frac{1}{2}- 2\\\\=-\frac{3}{2}[/tex]
∞ Limit Tak Hingga ∞
[tex]\sf \lim\limits_{x \to \infty} \sqrt{x^{2} +x-2}-x-2\\\\=\lim\limits_{x \to \infty} \sqrt{x^{2} +x-2}-(x+2)\\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +x-2}-\sqrt{(x+2)^{2}} \\\\=\lim\limits_{x \to \infty} (\sqrt{x^{2} +x-2}-\sqrt{x^{2}+4x+4}[/tex]
Jika bentuk [tex]\sf \lim\limits_{x \to \infty} (\sqrt{ax^{2}+bx+c } -\sqrt{px^{2} +qx+r} )[/tex] dengan a = p
Maka hasilnya [tex]\sf \frac{b-q}{2\sqrt{a} }[/tex] .
[tex]\sf\\=\frac{1-4}{2\sqrt{1} }\\\\=\frac{-3}{2\cdot 1} \\\\\boxed{\sf =-\frac{3}{2} }[/tex]
Jadi, hasil limit tak hingga tersebut adalah -3/2.
[tex]\boxed{\sf{shf}}[/tex]