Penjelasan dengan langkah-langkah:
[tex] {81}^{3} \div {27}^{3} \times {27}^{4} \\ = (81 \times 81 \times 81) \div (27 \times 27 \times 27) \times (27 \times 27 \times2 7 \times 27) \\ = 531.441 \div 19.683 \times 531.441 \\ = 1 \div 19.683 \\ = 19.683[/tex]
..
Sifat-sifat Eksponen:
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
[tex]\begin{aligned} 81^3 \div 27^3 \times 27^4 &= (3^4)^3 \div (3^3)^3 \times (3^3)^4 \\&= 3^{12} \div 3^{9} \times 3^{12} \\&= 3^{(12 - 9 + 12)} \\&= 3^{(3 + 12)} \\&= \boxed{\bold{\underline{3^{15}}}}~~~~\to 1,4348907 \times 10^7 \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 03 - 05 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
[tex] {81}^{3} \div {27}^{3} \times {27}^{4} \\ = (81 \times 81 \times 81) \div (27 \times 27 \times 27) \times (27 \times 27 \times2 7 \times 27) \\ = 531.441 \div 19.683 \times 531.441 \\ = 1 \div 19.683 \\ = 19.683[/tex]
Verified answer
Eksponen
..
Sifat-sifat Eksponen:
[tex]\begin{gathered} \begin{array}{ | c | c| c | } \hline\ \ \text{No}& \text{bentuk}& \text{penyederhanaan} \\ \hline 1 & a {}^{m} \times a {}^{n} &a {}^{(m + n)} \\ \hline 2 & (a {}^{m} ) {}^{n} &a {}^{(m \times n)} \\ \hline 3 & a {}^{n} \times {b}^{n} &(ab) {}^{n} \\ \hline 4 & a {}^{n} \div {b}^{n} &( \frac{a}{b} ) {}^{n} \\ \hline 5 & \frac{a {}^{m} }{ {a}^{n} } &a {}^{(m - n)} \\ \hline 6 & a {}^{0} &1 \: (a≠0) \\ \hline 7 & a {}^{ - n} & \frac{1}{a {}^{n} } \\ \hline 8 & a {}^{ \frac{m}{n} } & \sqrt[n]{a {}^{m} } \\ \hline 9 & ( \frac{a}{b}) {}^{ - n} & (\frac{b}{a} ) {}^{n} \\ \hline 10 & ( \frac{a}{b} ) {}^{n} & \frac{a {}^{n} }{ {b}^{n} } \\ \hline \end{array}\end{gathered}[/tex]
Penyelesaian Soal
[tex]\begin{aligned} 81^3 \div 27^3 \times 27^4 &= (3^4)^3 \div (3^3)^3 \times (3^3)^4 \\&= 3^{12} \div 3^{9} \times 3^{12} \\&= 3^{(12 - 9 + 12)} \\&= 3^{(3 + 12)} \\&= \boxed{\bold{\underline{3^{15}}}}~~~~\to 1,4348907 \times 10^7 \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 03 - 05 - 2023}}[/tex]