Jawab:
Penjelasan dengan langkah-langkah:
6x+2y=12
6x-2y=7
-------------+
12x=19
x=19/12
y=72/12-57/12
y= 15/12
kayaknya gini
..
[tex]\begin{cases} 6x-2y=7 \\ 3x+y=6 \end{cases}[/tex]
[tex]\begin{bmatrix}6& - 2\\3&1 \end{bmatrix}\begin{bmatrix} x\\y\end{bmatrix} = \begin{bmatrix}7\\6 \end{bmatrix}[/tex]
[tex]\begin{aligned}\begin{bmatrix} x \\ y \end{bmatrix} &= \begin{bmatrix} 6&-2\\3&1 \end{bmatrix}^{-1}\begin{bmatrix}7\\6 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \left( \frac{1}{6\times 1 - (-2) \times 3} \right) \begin{bmatrix}1 & 2 \\ -3 & 6 \end{bmatrix}\begin{bmatrix} 7 \\ 6 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \left( \frac{1}{6 + 6} \right) \begin{bmatrix}7 + 12 \\ -21 + 36 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \left( \frac{1}{12} \right) \begin{bmatrix}19 \\ 15 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \begin{bmatrix}\frac{19}{12} \\ \frac{15}{12} \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \begin{bmatrix}\frac{19}{12} \\ \frac{5}{4} \end{bmatrix} \\ \end{aligned}[/tex]
[tex]\displaystyle \rm{HP} = \left \{ \frac{19}{12}, \frac{5}{4} \right \}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 09 - 05 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
6x+2y=12
6x-2y=7
-------------+
12x=19
x=19/12
y=72/12-57/12
y= 15/12
kayaknya gini
Verified answer
Sistem Persamaan Linear Dua Variabel
[Metode Invers Matriks]
..
[tex]\begin{cases} 6x-2y=7 \\ 3x+y=6 \end{cases}[/tex]
Bentuk Matriks
[tex]\begin{bmatrix}6& - 2\\3&1 \end{bmatrix}\begin{bmatrix} x\\y\end{bmatrix} = \begin{bmatrix}7\\6 \end{bmatrix}[/tex]
Penyelesaian Soal
[tex]\begin{aligned}\begin{bmatrix} x \\ y \end{bmatrix} &= \begin{bmatrix} 6&-2\\3&1 \end{bmatrix}^{-1}\begin{bmatrix}7\\6 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \left( \frac{1}{6\times 1 - (-2) \times 3} \right) \begin{bmatrix}1 & 2 \\ -3 & 6 \end{bmatrix}\begin{bmatrix} 7 \\ 6 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \left( \frac{1}{6 + 6} \right) \begin{bmatrix}7 + 12 \\ -21 + 36 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \left( \frac{1}{12} \right) \begin{bmatrix}19 \\ 15 \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \begin{bmatrix}\frac{19}{12} \\ \frac{15}{12} \end{bmatrix} \\ \begin{bmatrix} x\\y \end{bmatrix} &= \begin{bmatrix}\frac{19}{12} \\ \frac{5}{4} \end{bmatrix} \\ \end{aligned}[/tex]
[tex]\displaystyle \rm{HP} = \left \{ \frac{19}{12}, \frac{5}{4} \right \}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 09 - 05 - 2023}}[/tex]