Integral
∫x^n dx = 1/(n + 1) x^(n + 1) + C
y' = dy/dx → dx = dy /y'
∫x² (2 - x³)^1/2 dx
= ∫x² (2 - x³)^1/2 d(2 - x³) / (-3x²)
= -1/3 ∫(2 - x³)^1/2 d(2 - x³)
= -1/3 . 1/(1/2 + 1) . (2 - x³)^(1/2 + 1) + C
= -1/3 . 2/3 (2 - x³)^3/2 + C
= -2/9 (2 - x³)√(2 - x³) + C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Integral
∫x^n dx = 1/(n + 1) x^(n + 1) + C
y' = dy/dx → dx = dy /y'
∫x² (2 - x³)^1/2 dx
= ∫x² (2 - x³)^1/2 d(2 - x³) / (-3x²)
= -1/3 ∫(2 - x³)^1/2 d(2 - x³)
= -1/3 . 1/(1/2 + 1) . (2 - x³)^(1/2 + 1) + C
= -1/3 . 2/3 (2 - x³)^3/2 + C
= -2/9 (2 - x³)√(2 - x³) + C