Pertama, kita manipulasi bentuk integral tak wajarnya
[tex] \begin{align}& \int_0^1 x \sqrt{x \sqrt[3]{x \sqrt[4]{x \sqrt[5]{...} } } } \: \text{ d}x \\ &= \int_0^1 x \cdot\sqrt{x} \cdot \sqrt{\sqrt[3]{x}} \cdot \sqrt{\sqrt[3]{\sqrt[4]{x}}} \cdots \: \text{ d}x \\ &= \int_0^1 x \cdot x^{\frac12}\cdot x^{\frac{1}{3\cdot2}}\cdot x^{\frac{1}{4\cdot3\cdot2}}\cdots \text{ d}x \\ &= \int_0^1 x^{\frac{1}{1!}}\cdot x^{\frac{1}{2!}}\cdot x^{\frac{1}{3!}} \cdot x^{\frac{1}{4!}}\cdots \text{ d}x \\ &=\int_0^1 x^{\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...} \text{ d}x \end{align} [/tex]
Bentuk [tex] \displaystyle \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+... = \sum_{n=1}^{\infty} \frac{1}{n!} [/tex].
Deret tersebut mirip dengan Deret Faktorial Terbalik:
[tex]\displaystyle \boxed{ \sum_{n=0}^{\infty}\frac{1}{n!} = e} [/tex]
Manipulasi sedikit deretnya menjadi
[tex] \begin{align} \sum_{n=0}^{\infty}\frac{1}{n!} &= e \\ \dfrac{1}{0!} + \sum_{n=1}^{\infty}\frac{1}{n!} &= e \\ 1+ \sum_{n=1}^{\infty}\frac{1}{n!} &= e \\ \sum_{n=1}^{\infty}\frac{1}{n!} &= e -1 \end{align} [/tex]
Maka, bentuk integralnya menjadi
[tex] \begin{align} \int_0^1 x^{e-1} \text{ d}x &= \left[ \dfrac{x^e}{e}\right]_{\blue0}^{\blue1} \\ &= \left[\dfrac{\blue1^e}{e}\right]-\left[\dfrac{\blue0^e}{e}\right] \\ &= \dfrac{1}{e}\end{align} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Pertama, kita manipulasi bentuk integral tak wajarnya
[tex] \begin{align}& \int_0^1 x \sqrt{x \sqrt[3]{x \sqrt[4]{x \sqrt[5]{...} } } } \: \text{ d}x \\ &= \int_0^1 x \cdot\sqrt{x} \cdot \sqrt{\sqrt[3]{x}} \cdot \sqrt{\sqrt[3]{\sqrt[4]{x}}} \cdots \: \text{ d}x \\ &= \int_0^1 x \cdot x^{\frac12}\cdot x^{\frac{1}{3\cdot2}}\cdot x^{\frac{1}{4\cdot3\cdot2}}\cdots \text{ d}x \\ &= \int_0^1 x^{\frac{1}{1!}}\cdot x^{\frac{1}{2!}}\cdot x^{\frac{1}{3!}} \cdot x^{\frac{1}{4!}}\cdots \text{ d}x \\ &=\int_0^1 x^{\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...} \text{ d}x \end{align} [/tex]
Bentuk [tex] \displaystyle \frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+... = \sum_{n=1}^{\infty} \frac{1}{n!} [/tex].
Deret tersebut mirip dengan Deret Faktorial Terbalik:
[tex]\displaystyle \boxed{ \sum_{n=0}^{\infty}\frac{1}{n!} = e} [/tex]
Manipulasi sedikit deretnya menjadi
[tex] \begin{align} \sum_{n=0}^{\infty}\frac{1}{n!} &= e \\ \dfrac{1}{0!} + \sum_{n=1}^{\infty}\frac{1}{n!} &= e \\ 1+ \sum_{n=1}^{\infty}\frac{1}{n!} &= e \\ \sum_{n=1}^{\infty}\frac{1}{n!} &= e -1 \end{align} [/tex]
Maka, bentuk integralnya menjadi
[tex] \begin{align} \int_0^1 x^{e-1} \text{ d}x &= \left[ \dfrac{x^e}{e}\right]_{\blue0}^{\blue1} \\ &= \left[\dfrac{\blue1^e}{e}\right]-\left[\dfrac{\blue0^e}{e}\right] \\ &= \dfrac{1}{e}\end{align} [/tex]
JAWABAN YANG TEPAT ADALAH C.