Jawaban:
DIKETAHUI
AB = AC = 14 cm
BAC = 60°
JAWAB
• cari luas BOC warna putih
gunakan perbandingan 1 : sqrt(3) : 2
SO = 7/3 × sqrt(3)
L = L ABC warna putih - 2 × L ABO
L = (60/360 × 22/7 × 14²) - 2 × (½ × 7/3 × sqrt(3) × 14)
L = 308/3 - (98 × sqrt(3))/3
L = (308 - 98 × sqrt(3))/3
• cari daerah kuning
L = L BOC - L BOC putih
L = (120/360 × 22/7 × (14/3 × sqrt(3))²) - (308 - 98 × sqrt(3))/3
L = 616/9 - 308/3 + (98 × sqrt(3))/3
L = 616/9 - 924/9 + (294 × sqrt(3))/9
L = (294 × sqrt(3) - 308)/9 cm²
PEMBAHASAN
Bangun Datar
Lingkaran
P pusat lingkaran
Jari-jari lingkaran = PB = PC = r
r = 2/3 tinggi ∆ABC
r = 2/3 × 14 sin 60°
r = 14/3 √3 cm
r² = (14/√3)² = 196/3 cm²
∠BPC = 2 ∠BAC = 120°
Luas tembereng BC1
= luas juring BPC - luas ∆BPC
= 120°/360° × πr² - 1/2 r² sin 120°
= 1/3 × 22/7 × 196/3 - 1/2 × 196/3 × 1/2 √3
= 616/9 - 49/3 √3 cm²
Luas tembereng BC2
= luas juring BAC - luas ∆BAC
= 60°/360° × π × AB² - 1/4 AB² √3
= 1/6 × 22/7 × 14² - 1/4 × 14² √3
= 616/6 - 49 √3 cm²
Luas area kuning
= luas BC1 - luas BC2
= 616 (1/9 - 1/6) + 49(√3 - 1/3 √3)
= 98/3 √3 - 308/9 cm²
≈ 22,358 cm²
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
LINGKARAN
DIKETAHUI
AB = AC = 14 cm
BAC = 60°
JAWAB
• cari luas BOC warna putih
gunakan perbandingan 1 : sqrt(3) : 2
SO = 7/3 × sqrt(3)
L = L ABC warna putih - 2 × L ABO
L = (60/360 × 22/7 × 14²) - 2 × (½ × 7/3 × sqrt(3) × 14)
L = 308/3 - (98 × sqrt(3))/3
L = (308 - 98 × sqrt(3))/3
• cari daerah kuning
L = L BOC - L BOC putih
L = (120/360 × 22/7 × (14/3 × sqrt(3))²) - (308 - 98 × sqrt(3))/3
L = 616/9 - 308/3 + (98 × sqrt(3))/3
L = 616/9 - 924/9 + (294 × sqrt(3))/9
L = (294 × sqrt(3) - 308)/9 cm²
Verified answer
PEMBAHASAN
Bangun Datar
Lingkaran
P pusat lingkaran
Jari-jari lingkaran = PB = PC = r
r = 2/3 tinggi ∆ABC
r = 2/3 × 14 sin 60°
r = 14/3 √3 cm
r² = (14/√3)² = 196/3 cm²
∠BPC = 2 ∠BAC = 120°
Luas tembereng BC1
= luas juring BPC - luas ∆BPC
= 120°/360° × πr² - 1/2 r² sin 120°
= 1/3 × 22/7 × 196/3 - 1/2 × 196/3 × 1/2 √3
= 616/9 - 49/3 √3 cm²
Luas tembereng BC2
= luas juring BAC - luas ∆BAC
= 60°/360° × π × AB² - 1/4 AB² √3
= 1/6 × 22/7 × 14² - 1/4 × 14² √3
= 616/6 - 49 √3 cm²
Luas area kuning
= luas BC1 - luas BC2
= 616 (1/9 - 1/6) + 49(√3 - 1/3 √3)
= 98/3 √3 - 308/9 cm²
≈ 22,358 cm²