[tex] \cos \begin{pmatrix}\frac{ 2 \pi}{3}+ b\end{pmatrix}- \cos \begin{pmatrix}\frac{2 \pi}{3} - b \end{pmatrix} \\ \\ \cos \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \cos(b) - \sin \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \sin(b) - \cos \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \cos(b) + \sin \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \sin(b) \\ \\ - \frac{1}{2} \cos(b) - \frac{ \sqrt{3} }{2} \sin(b) - \begin{pmatrix} - \frac{1}{2} \cos(b) + \frac{ \sqrt{3} }{2} \sin(b) \end{pmatrix} \\ \\ \cancel{- \frac{1}{2} \cos(b)} - \frac{ \sqrt{3} }{2} \sin(b) \cancel{+ \frac{1}{2} \cos(b)} - \frac{ \sqrt{3} }{2} \sin(b) \\ \\ - \frac{ \sqrt{3} }{2} \sin(b) - \frac{ \sqrt{3} }{2} \sin(b) \\ \\ - \frac{ \cancel{2 }\sqrt{3} }{ \cancel{2}} \sin(b) \\ \\ \boxed{ - \sqrt{3} \sin(b)} \\ \\ \\ \\ maka = \\\cos \begin{pmatrix}\frac{ 2 \pi}{3}+ b\end{pmatrix}- \cos \begin{pmatrix}\frac{2 \pi}{3} - b \end{pmatrix} = 1 \: adalah \: \red{salah} \\ \\ seharusnya = \\ \green{\cos \begin{pmatrix}\frac{ 2 \pi}{3}+ b\end{pmatrix}- \cos \begin{pmatrix}\frac{2 \pi}{3} - b \end{pmatrix} = - \sqrt{3 } \sin(b)} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex] \cos \begin{pmatrix}\frac{ 2 \pi}{3}+ b\end{pmatrix}- \cos \begin{pmatrix}\frac{2 \pi}{3} - b \end{pmatrix} \\ \\ \cos \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \cos(b) - \sin \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \sin(b) - \cos \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \cos(b) + \sin \begin{pmatrix} \frac{2\pi}{3} \end{pmatrix} \sin(b) \\ \\ - \frac{1}{2} \cos(b) - \frac{ \sqrt{3} }{2} \sin(b) - \begin{pmatrix} - \frac{1}{2} \cos(b) + \frac{ \sqrt{3} }{2} \sin(b) \end{pmatrix} \\ \\ \cancel{- \frac{1}{2} \cos(b)} - \frac{ \sqrt{3} }{2} \sin(b) \cancel{+ \frac{1}{2} \cos(b)} - \frac{ \sqrt{3} }{2} \sin(b) \\ \\ - \frac{ \sqrt{3} }{2} \sin(b) - \frac{ \sqrt{3} }{2} \sin(b) \\ \\ - \frac{ \cancel{2 }\sqrt{3} }{ \cancel{2}} \sin(b) \\ \\ \boxed{ - \sqrt{3} \sin(b)} \\ \\ \\ \\ maka = \\\cos \begin{pmatrix}\frac{ 2 \pi}{3}+ b\end{pmatrix}- \cos \begin{pmatrix}\frac{2 \pi}{3} - b \end{pmatrix} = 1 \: adalah \: \red{salah} \\ \\ seharusnya = \\ \green{\cos \begin{pmatrix}\frac{ 2 \pi}{3}+ b\end{pmatrix}- \cos \begin{pmatrix}\frac{2 \pi}{3} - b \end{pmatrix} = - \sqrt{3 } \sin(b)} [/tex]