[tex] \frac{ \sqrt{8} }{ \sqrt{2} } = [/tex]
[tex] \sqrt{ \frac{8}{2} } = [/tex]
[tex] \sqrt{4} = [/tex]
[tex]2[/tex]
[tex] \frac{4}{3 + \sqrt{5} } = [/tex]
[tex] \frac{4}{3 + \sqrt{5} } · \frac{3 - \sqrt{5} }{3 - \sqrt{5} } = [/tex]
[tex] \frac{4(3 - \sqrt{5} )}{(3 + \sqrt{5} )(3 - \sqrt{5} )} = [/tex]
[tex] \frac{4(3 - \sqrt{5}) }{3(3 - \sqrt{5}) + \sqrt{5}(3 - \sqrt{5}) } = [/tex]
[tex] \frac{12 - 4 \sqrt{5} }{9 -3 \sqrt{5} + 3 \sqrt{5} - 5 } = [/tex]
[tex] \frac{12 - 4 \sqrt{5} }{9 - 5} = [/tex]
[tex] \frac{12 - 4 \sqrt{5} }{4} = [/tex]
[tex]3 - \sqrt{5} [/tex]
[tex] \frac{6}{4 - \sqrt{10} } = [/tex]
[tex] \frac{6}{4 - \sqrt{10} } · \frac{4 + \sqrt{10} }{4 + \sqrt{10} } = [/tex]
[tex] \frac{6(4 + \sqrt{10} )}{(4 - \sqrt{10} )(4 + \sqrt{10} )} = [/tex]
[tex] \frac{6(4 + \sqrt{10}) }{4(4 + \sqrt{10} ) - \sqrt{10}(4 + \sqrt{10} )} = [/tex]
[tex] \frac{24 + 6\sqrt{10} }{16 + 4 \sqrt{10} -4 \sqrt{10} - 10 } = [/tex]
[tex] \frac{24 + 6 \sqrt{10} }{16 - 10} = [/tex]
[tex] \frac{24 + 6 \sqrt{10} }{6} = [/tex]
[tex]4 + \sqrt{10} [/tex]
[tex] \frac{12}{5 - \sqrt{22} } · \frac{5 + \sqrt{22} }{5 + \sqrt{22} } = [/tex]
[tex] \frac{12(5 + \sqrt{12}) }{(5 - \sqrt{22})(5 + \sqrt{22}) } = [/tex]
[tex] \frac{12(5 + \sqrt{22} )}{5(5 + \sqrt{22} ) - \sqrt{22}(5 + \sqrt{22} )} = [/tex]
[tex] \frac{60 + 12 \sqrt{22} }{25 + 5 \sqrt{22} - 5 \sqrt{22} - 22} = [/tex]
[tex] \frac{60 + 12 \sqrt{22} }{25 - 22} = [/tex]
[tex] \frac{6 0+ 12 \sqrt{22} }{3} = [/tex]
[tex]20 + 4 \sqrt{22} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1
[tex] \frac{ \sqrt{8} }{ \sqrt{2} } = [/tex]
[tex] \sqrt{ \frac{8}{2} } = [/tex]
[tex] \sqrt{4} = [/tex]
[tex]2[/tex]
2
[tex] \frac{4}{3 + \sqrt{5} } = [/tex]
[tex] \frac{4}{3 + \sqrt{5} } · \frac{3 - \sqrt{5} }{3 - \sqrt{5} } = [/tex]
[tex] \frac{4(3 - \sqrt{5} )}{(3 + \sqrt{5} )(3 - \sqrt{5} )} = [/tex]
[tex] \frac{4(3 - \sqrt{5}) }{3(3 - \sqrt{5}) + \sqrt{5}(3 - \sqrt{5}) } = [/tex]
[tex] \frac{12 - 4 \sqrt{5} }{9 -3 \sqrt{5} + 3 \sqrt{5} - 5 } = [/tex]
[tex] \frac{12 - 4 \sqrt{5} }{9 - 5} = [/tex]
[tex] \frac{12 - 4 \sqrt{5} }{4} = [/tex]
[tex]3 - \sqrt{5} [/tex]
3
[tex] \frac{6}{4 - \sqrt{10} } = [/tex]
[tex] \frac{6}{4 - \sqrt{10} } · \frac{4 + \sqrt{10} }{4 + \sqrt{10} } = [/tex]
[tex] \frac{6(4 + \sqrt{10} )}{(4 - \sqrt{10} )(4 + \sqrt{10} )} = [/tex]
[tex] \frac{6(4 + \sqrt{10}) }{4(4 + \sqrt{10} ) - \sqrt{10}(4 + \sqrt{10} )} = [/tex]
[tex] \frac{24 + 6\sqrt{10} }{16 + 4 \sqrt{10} -4 \sqrt{10} - 10 } = [/tex]
[tex] \frac{24 + 6 \sqrt{10} }{16 - 10} = [/tex]
[tex] \frac{24 + 6 \sqrt{10} }{6} = [/tex]
[tex]4 + \sqrt{10} [/tex]
4
[tex] \frac{12}{5 - \sqrt{22} } = [/tex]
[tex] \frac{12}{5 - \sqrt{22} } · \frac{5 + \sqrt{22} }{5 + \sqrt{22} } = [/tex]
[tex] \frac{12(5 + \sqrt{12}) }{(5 - \sqrt{22})(5 + \sqrt{22}) } = [/tex]
[tex] \frac{12(5 + \sqrt{22} )}{5(5 + \sqrt{22} ) - \sqrt{22}(5 + \sqrt{22} )} = [/tex]
[tex] \frac{60 + 12 \sqrt{22} }{25 + 5 \sqrt{22} - 5 \sqrt{22} - 22} = [/tex]
[tex] \frac{60 + 12 \sqrt{22} }{25 - 22} = [/tex]
[tex] \frac{6 0+ 12 \sqrt{22} }{3} = [/tex]
[tex]20 + 4 \sqrt{22} [/tex]