[tex]\rm D)1[/tex]
[tex]\rm TRIGONOMETRI [/tex]
Persamaan Trigonometri
[tex]\rm \tan \alpha=\frac{\sin\alpha}{\cos \alpha}[/tex]
[tex]\rm \frac{\sqrt{2pq}}{p-q}=\frac{\sqrt{2pq}}{cos\alpha}[/tex]
[tex]\rm cos\alpha=p-q[/tex]
Identitas Trigonometri
[tex]\rm Sin^2 \alpha+Cos^2\alpha=1[/tex]
[tex]\rm (\sqrt{2pq})^2+(p-q)^2=1[/tex]
[tex]\rm 2pq+p^2+q^2-2pq=1[/tex]
[tex]\rm p^2+q^2=1....D[/tex]
Mapel : Matematika
Kelas: 11
Materi :Bab 3.Trigonomeri Lanjut
Kode Soal:2
Kode Kategorisasi:11.2.3
Jawab:
D
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\tan\alpha&\:=\frac{\sqrt{2pq}}{p-q}\\\frac{\sin\alpha}{\cos\alpha}\:&=\frac{\sqrt{2pq}}{p-q}\\\frac{\sqrt{2pq}}{\cos\alpha}\:&=\frac{\sqrt{2pq}}{p-q}\\\cos\alpha\:&=p-q\end{aligned}[/tex]
Berdasarkan penjabaran (p - q)² = p² - 2pq + q²
[tex]\begin{aligned}p^2+q^2&\:=(p-q)^2+2pq\\\:&=\cos^2\alpha+\sin^2\alpha\\\:&=1\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
[tex]\rm D)1[/tex]
Pembahasan:
[tex]\rm TRIGONOMETRI [/tex]
Penjelasan:
Persamaan Trigonometri
[tex]\rm \tan \alpha=\frac{\sin\alpha}{\cos \alpha}[/tex]
[tex]\rm \frac{\sqrt{2pq}}{p-q}=\frac{\sqrt{2pq}}{cos\alpha}[/tex]
[tex]\rm cos\alpha=p-q[/tex]
Identitas Trigonometri
[tex]\rm Sin^2 \alpha+Cos^2\alpha=1[/tex]
[tex]\rm (\sqrt{2pq})^2+(p-q)^2=1[/tex]
[tex]\rm 2pq+p^2+q^2-2pq=1[/tex]
[tex]\rm p^2+q^2=1....D[/tex]
Detail Jawaban:
Mapel : Matematika
Kelas: 11
Materi :Bab 3.Trigonomeri Lanjut
Kode Soal:2
Kode Kategorisasi:11.2.3
Jawab:
D
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\tan\alpha&\:=\frac{\sqrt{2pq}}{p-q}\\\frac{\sin\alpha}{\cos\alpha}\:&=\frac{\sqrt{2pq}}{p-q}\\\frac{\sqrt{2pq}}{\cos\alpha}\:&=\frac{\sqrt{2pq}}{p-q}\\\cos\alpha\:&=p-q\end{aligned}[/tex]
Berdasarkan penjabaran (p - q)² = p² - 2pq + q²
[tex]\begin{aligned}p^2+q^2&\:=(p-q)^2+2pq\\\:&=\cos^2\alpha+\sin^2\alpha\\\:&=1\end{aligned}[/tex]