[tex]\sf a = {2}^{2 {x}^{2} + 4x - 8} [/tex]
[tex] \\ [/tex]
[tex]\sf a.b = {64}^{x} \div 4096[/tex]
[tex]\sf a.b = {2}^{6x} \div {2}^{12} [/tex]
[tex]\sf {2}^{2 {x}^{2} + 4x - 8} .b = {2}^{6x - 12} [/tex]
[tex]\sf b = \frac{2 {}^{6x - 12} }{ {2}^{ {2x}^{2} + 4x - 8} } [/tex]
[tex]\sf b = 2 {}^{(6x - 12) - (2 {x}^{2} + 4x - 8)} [/tex]
[tex]\sf b = {2}^{ - 2 {x}^{2} + 6x - 4x - 12 + 8} [/tex]
[tex]\boxed{\sf b = \blue{\boxed{\sf 2 {}^{ - 2 {x}^{2} + 2x - 4} }}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\sf a = {2}^{2 {x}^{2} + 4x - 8} [/tex]
[tex] \\ [/tex]
[tex]\sf a.b = {64}^{x} \div 4096[/tex]
[tex]\sf a.b = {2}^{6x} \div {2}^{12} [/tex]
[tex]\sf {2}^{2 {x}^{2} + 4x - 8} .b = {2}^{6x - 12} [/tex]
[tex]\sf b = \frac{2 {}^{6x - 12} }{ {2}^{ {2x}^{2} + 4x - 8} } [/tex]
[tex]\sf b = 2 {}^{(6x - 12) - (2 {x}^{2} + 4x - 8)} [/tex]
[tex]\sf b = {2}^{ - 2 {x}^{2} + 6x - 4x - 12 + 8} [/tex]
[tex]\boxed{\sf b = \blue{\boxed{\sf 2 {}^{ - 2 {x}^{2} + 2x - 4} }}}[/tex]