Penjelasan dengan langkah-langkah:
Pembuktian Identitas trigonometri
[tex]\begin{aligned}\rm\frac{1+\tan A}{\sin A+\cos A}&=\sec A \\\rm \frac{1 + \frac{ \sin A }{\cos A} }{\sin A+\cos A} &= \sec A\\\rm \frac{\frac{\cos A+\sin A}{\cos A}}{\sin A+\cos A}&= \sec A\\\rm\frac{\cancel{\cos A+\sin A}}{\cos A}\times\frac{1}{\cancel{\sin A+\cos A}}&=\sec A\\\rm\frac{1}{\cos A}&=\sec A\\&\because\boxed{\sec X=\frac{1}{\cos X}}\\ \\ \rm\therefore \sec A&=\sec A\cdots\left[Terbukti\:\:✓\right]\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Penjelasan dengan langkah-langkah:
Pembuktian Identitas trigonometri
[tex]\begin{aligned}\rm\frac{1+\tan A}{\sin A+\cos A}&=\sec A \\\rm \frac{1 + \frac{ \sin A }{\cos A} }{\sin A+\cos A} &= \sec A\\\rm \frac{\frac{\cos A+\sin A}{\cos A}}{\sin A+\cos A}&= \sec A\\\rm\frac{\cancel{\cos A+\sin A}}{\cos A}\times\frac{1}{\cancel{\sin A+\cos A}}&=\sec A\\\rm\frac{1}{\cos A}&=\sec A\\&\because\boxed{\sec X=\frac{1}{\cos X}}\\ \\ \rm\therefore \sec A&=\sec A\cdots\left[Terbukti\:\:✓\right]\end{aligned}[/tex]