[tex]\displaystyle\lim_{n \to -2} \frac{ {n}^{3} + {n}^{2} - 8n - 12}{ {n}^{2} + 4n + 4}[/tex]
= n³ + 2n² - n² - 2n - 6n - 12/(n + 2)²
= n²( n + 2 ) - n( n + 2 ) - 6( n + 2 )
= (n + 2)(n² - n - 6)/(n + 2)²
= n² + (2 - 3)n - 6/n + 2
= n² + 1n - 6/n + 2
= n² + n - 6/n + 2
= (n + 2)(n - 3)/(n + 2)
= n - 3
= -2 - 3
= -(2 + 3)
= -5
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\displaystyle\lim_{n \to -2} \frac{ {n}^{3} + {n}^{2} - 8n - 12}{ {n}^{2} + 4n + 4}[/tex]
= n³ + 2n² - n² - 2n - 6n - 12/(n + 2)²
= n²( n + 2 ) - n( n + 2 ) - 6( n + 2 )
= (n + 2)(n² - n - 6)/(n + 2)²
= n² + (2 - 3)n - 6/n + 2
= n² + 1n - 6/n + 2
= n² + n - 6/n + 2
= (n + 2)(n - 3)/(n + 2)
= n - 3
= -2 - 3
= -(2 + 3)
= -5