limit
bentuk 0/0
•
[tex]\displaystyle\lim_{x\to \pi} \frac{ {2x}^{2} - 6x\pi + {4\pi}^{2} }{ {x}^{2} - {\pi}^{2} } \\ \\ = \: \displaystyle\lim_{x\to \pi} \frac{ 2({x}^{2} - 3x\pi + {2\pi}^{2} )}{ {x}^{2} - {\pi}^{2} } \\ \\ = \: \displaystyle\lim_{x\to \pi} \frac{2(x - \pi)(x - 2\pi)}{(x - \pi)(x + \pi)} \\ \\ = \: \displaystyle\frac{2(\pi - 2\pi)}{\pi + \pi} \\ \\ = \: \displaystyle \: \frac{ - 2\pi}{2\pi} \\ \\ = \: \displaystyle - 1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
limit
bentuk 0/0
•
[tex]\displaystyle\lim_{x\to \pi} \frac{ {2x}^{2} - 6x\pi + {4\pi}^{2} }{ {x}^{2} - {\pi}^{2} } \\ \\ = \: \displaystyle\lim_{x\to \pi} \frac{ 2({x}^{2} - 3x\pi + {2\pi}^{2} )}{ {x}^{2} - {\pi}^{2} } \\ \\ = \: \displaystyle\lim_{x\to \pi} \frac{2(x - \pi)(x - 2\pi)}{(x - \pi)(x + \pi)} \\ \\ = \: \displaystyle\frac{2(\pi - 2\pi)}{\pi + \pi} \\ \\ = \: \displaystyle \: \frac{ - 2\pi}{2\pi} \\ \\ = \: \displaystyle - 1[/tex]