..
[tex]\begin{aligned} \lim \limits_{x \to 3} & \left(\frac{ {x}^{3} - 27}{ {x}^{2} - 9 } \right) \\ \lim \limits_{x \to 3}& \left(\frac{\frac{d}{dx}(x^3 - 27)}{\frac{d}{dx}(x^2 - 9)} \right) \\ \lim \limits_{x \to 3}& \left( \frac{3x^2}{2x} \right) \\ \lim \limits_{x \to 3}& \left(\frac{3x}{2} \right) \end{aligned}[/tex]
[tex]\begin{aligned} &= \frac{3(3)}{2} \\&= \frac{9}{2} \\&= \boxed{\bold{\underline{4.5}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Selamat Hari Raya Idul Fitri 1444 H}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 29 - 04 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Limit
[L'Hopital]
..
[tex]\begin{aligned} \lim \limits_{x \to 3} & \left(\frac{ {x}^{3} - 27}{ {x}^{2} - 9 } \right) \\ \lim \limits_{x \to 3}& \left(\frac{\frac{d}{dx}(x^3 - 27)}{\frac{d}{dx}(x^2 - 9)} \right) \\ \lim \limits_{x \to 3}& \left( \frac{3x^2}{2x} \right) \\ \lim \limits_{x \to 3}& \left(\frac{3x}{2} \right) \end{aligned}[/tex]
[tex]\begin{aligned} &= \frac{3(3)}{2} \\&= \frac{9}{2} \\&= \boxed{\bold{\underline{4.5}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{Selamat Hari Raya Idul Fitri 1444 H}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 29 - 04 - 2023}}[/tex]