[tex]\displaystyle\lim_{x\to - 2} \: \frac{ {x}^{2} + x - 6 }{ {x}^{2} + 9x + 18 }[/tex]
= x(x + 3) - 2(x + 3)/x(x + 6) + 3(x + 6)
= (x + 3)(x - 2)/(x + 6)(x + 3)
= (x + 3)/(x + 3)(x - 2)/(x + 6)
= (x - 2)/(x + 6)
= (-2 - 2)/(-2 + 6)
= -4/4
= -1
Jawaban:
Cara pemfaktoran:
lim x→(-2) (x² + x - 6)/(x² + 9x + 18)
lim x→(-2) (x+3)(x-2)/(x+3)(x+6)
eliminasi/coret persamaan (x+3), menghasilkan:
(x-2)/(x+6) → substitusi nilai x
(x-2)/(x+6) = (-2-2)/(-2+6) = -4/(4) = -1
Cara substitusi langsung:
lim x→(-2) (x² + x -6)/(x²+9x+18)
substitusi nilai x = -2 langsung:
(x²+x-6)/(x²+9x+18) = {(-2)²+(-2)-6}/{(-2)²+9(-2)+18} = {4-2-6}/{4-18+18} = -4/4 = –1
Opsi (C)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\displaystyle\lim_{x\to - 2} \: \frac{ {x}^{2} + x - 6 }{ {x}^{2} + 9x + 18 }[/tex]
= x(x + 3) - 2(x + 3)/x(x + 6) + 3(x + 6)
= (x + 3)(x - 2)/(x + 6)(x + 3)
= (x + 3)/(x + 3)(x - 2)/(x + 6)
= (x - 2)/(x + 6)
= (-2 - 2)/(-2 + 6)
= -4/4
= -1
Jawaban:
Cara pemfaktoran:
lim x→(-2) (x² + x - 6)/(x² + 9x + 18)
lim x→(-2) (x+3)(x-2)/(x+3)(x+6)
eliminasi/coret persamaan (x+3), menghasilkan:
(x-2)/(x+6) → substitusi nilai x
(x-2)/(x+6) = (-2-2)/(-2+6) = -4/(4) = -1
Cara substitusi langsung:
lim x→(-2) (x² + x -6)/(x²+9x+18)
substitusi nilai x = -2 langsung:
(x²+x-6)/(x²+9x+18) = {(-2)²+(-2)-6}/{(-2)²+9(-2)+18} = {4-2-6}/{4-18+18} = -4/4 = –1
Opsi (C)