Jawaban:
[tex] {9}^{690} [/tex]
Penjelasan dengan langkah-langkah:
Eksponen
..
[tex]n {}^{a} \times {n}^{b} = {n}^{a + b} [/tex]
[tex]n {}^{a} \div {n}^{b} = {n}^{a - b} [/tex]
[tex] {9}^{12} \times {9}^{678} \div 9 {}^{34} \times {9}^{34} [/tex]
[tex] = {9}^{(12 + 678 - 34 + 34)} [/tex]
[tex] = {9}^{(12 + 678 )} [/tex]
[tex] \: [/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at}}[/tex]
9¹²(9⁶⁷⁸)/9³⁴(9³⁴)
= 9¹² + ⁶⁷⁸/9³⁴(9³⁴)
= 9⁶⁹⁰ - ³⁴(9³⁴)
= 9⁶⁵⁶ + ³⁴
= 9⁶⁹⁰
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
[tex] {9}^{690} [/tex]
Penjelasan dengan langkah-langkah:
Eksponen
..
[tex]n {}^{a} \times {n}^{b} = {n}^{a + b} [/tex]
[tex]n {}^{a} \div {n}^{b} = {n}^{a - b} [/tex]
..
[tex] {9}^{12} \times {9}^{678} \div 9 {}^{34} \times {9}^{34} [/tex]
[tex] = {9}^{(12 + 678 - 34 + 34)} [/tex]
[tex] = {9}^{(12 + 678 )} [/tex]
[tex] {9}^{690} [/tex]
[tex] \: [/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at}}[/tex]
Verified answer
9¹²(9⁶⁷⁸)/9³⁴(9³⁴)
= 9¹² + ⁶⁷⁸/9³⁴(9³⁴)
= 9⁶⁹⁰ - ³⁴(9³⁴)
= 9⁶⁵⁶ + ³⁴
= 9⁶⁹⁰