[tex]6 \sqrt{5} + \sqrt{2} - 20 \sqrt{5} \\ = 6 \sqrt{5} - 20 \sqrt{5} + \sqrt{2} \\ = (6 - 20) \sqrt{5} + \sqrt{2} \\ = \blue{( - 14 \sqrt{5}) + \sqrt{2} } \\ \\ \sqrt{12} + \sqrt{27} + \sqrt{75} \\ = \sqrt{4 \times 3} + \sqrt{9 \times 3} + \sqrt{25 \times 3} \\ = 2 \sqrt{3} + 3 \sqrt{3} + 5 \sqrt{3} \\ = (2 + 3 + 5) \sqrt{3} \\ = \blue{10 \sqrt{3} }[/tex]
===
Answer:
>>> Mathematics
> -14√5 + √2
> 10√3
Explain:
6√5 + √2 - 20√5
> 6√5 - 20√5 + √2
> 6 - 20√5 + √2
√12 + √27 + √75
> (√4 x 3) + (√9 x 3) + (√25 x 3)
> 2√3 + 3√3 + 5√3
> 2 + 3 + 5√3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
[tex]6 \sqrt{5} + \sqrt{2} - 20 \sqrt{5} \\ = 6 \sqrt{5} - 20 \sqrt{5} + \sqrt{2} \\ = (6 - 20) \sqrt{5} + \sqrt{2} \\ = \blue{( - 14 \sqrt{5}) + \sqrt{2} } \\ \\ \sqrt{12} + \sqrt{27} + \sqrt{75} \\ = \sqrt{4 \times 3} + \sqrt{9 \times 3} + \sqrt{25 \times 3} \\ = 2 \sqrt{3} + 3 \sqrt{3} + 5 \sqrt{3} \\ = (2 + 3 + 5) \sqrt{3} \\ = \blue{10 \sqrt{3} }[/tex]
===
Answer:
>>> Mathematics
> -14√5 + √2
> 10√3
Explain:
6√5 + √2 - 20√5
> 6√5 - 20√5 + √2
> 6 - 20√5 + √2
> -14√5 + √2
√12 + √27 + √75
> (√4 x 3) + (√9 x 3) + (√25 x 3)
> 2√3 + 3√3 + 5√3
> 2 + 3 + 5√3
> 10√3