Odpowiedź:
[tex]$\iint\limits^{}_{D}(8x-3x^2) \ \text{d}x \text{d}y=-625[/tex]
Szczegółowe wyjaśnienie:
[tex]$\iint\limits^{}_{D}(8x-3x^2) \ \text{d}x \text{d}y[/tex]
Obszar regularny [tex]D[/tex] to kwadrat ograniczony przez podane proste. Dzielimy go na dwa obszary normalne względem osi [tex]OX[/tex] :
[tex]D_{1}=\{x,y \in \mathbb{R}^2: -x-5\leq y\leq x+5 \wedge -5\leq x\leq 0\}[/tex]
[tex]D_{2}=\{x,y \in \mathbb{R}^2: x-5\leq y\leq -x+5 \wedge 0\leq x\leq 5\}[/tex]
Zatem:
[tex]$\iint\limits^{}_{D}(8x-3x^2) \ \text{d}x \text{d}y=\iint\limits^{}_{D_{1}}(8x-3x^2) \ \text{d}x \text{d}y+\iint\limits^{}_{D_2}(8x-3x^2) \ \text{d}x \text{d}y=[/tex]
[tex]$=\int\limits^{0}_{-5}\Bigg(\int\limits^{x+5}_{-x-5}8x-3x^2 \ \text{d}y\Bigg) \text{d}x+\int\limits^{5}_{0}\Bigg(\int\limits^{-x+5}_{x-5}8x-3x^2 \ \text{d}y\Bigg) \text{d}x=[/tex]
[tex]$=\int\limits^{0}_{-5}(8x-3x^2)(x+5+x+5) \ \text{d}x+\int\limits^{5}_{0}(8x-3x^2)(-x+5-x+5) \ \text{d}x=[/tex]
[tex]$=2\int\limits^{0}_{-5}(8x-3x^2)(x+5) \ \text{d}x+2\int\limits^{5}_{0}(8x-3x^2)(5-x) \ \text{d}x=[/tex]
[tex]$=2\int\limits^{0}_{-5}-3x^3-7x^2+40x \ \text{d}x+2\int\limits^{5}_{0} 3x^3-23x^2+40x \ \text{d}x=[/tex]
[tex]$= 2 \cdot \Big(-\frac{3}{4}x^4-\frac{7}{3}x^3+20x^2\Big)\Bigg|^{0}_{-5}+2 \cdot \Big(\frac{3}{4}x^4-\frac{23}{3}x^3+20x^2\Big)\Bigg|^{0}_{-5}=[/tex]
[tex]$=-\frac{3875}{6}+\frac{125}{6}=-625[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]$\iint\limits^{}_{D}(8x-3x^2) \ \text{d}x \text{d}y=-625[/tex]
Szczegółowe wyjaśnienie:
[tex]$\iint\limits^{}_{D}(8x-3x^2) \ \text{d}x \text{d}y[/tex]
Obszar regularny [tex]D[/tex] to kwadrat ograniczony przez podane proste. Dzielimy go na dwa obszary normalne względem osi [tex]OX[/tex] :
[tex]D_{1}=\{x,y \in \mathbb{R}^2: -x-5\leq y\leq x+5 \wedge -5\leq x\leq 0\}[/tex]
[tex]D_{2}=\{x,y \in \mathbb{R}^2: x-5\leq y\leq -x+5 \wedge 0\leq x\leq 5\}[/tex]
Zatem:
[tex]$\iint\limits^{}_{D}(8x-3x^2) \ \text{d}x \text{d}y=\iint\limits^{}_{D_{1}}(8x-3x^2) \ \text{d}x \text{d}y+\iint\limits^{}_{D_2}(8x-3x^2) \ \text{d}x \text{d}y=[/tex]
[tex]$=\int\limits^{0}_{-5}\Bigg(\int\limits^{x+5}_{-x-5}8x-3x^2 \ \text{d}y\Bigg) \text{d}x+\int\limits^{5}_{0}\Bigg(\int\limits^{-x+5}_{x-5}8x-3x^2 \ \text{d}y\Bigg) \text{d}x=[/tex]
[tex]$=\int\limits^{0}_{-5}(8x-3x^2)(x+5+x+5) \ \text{d}x+\int\limits^{5}_{0}(8x-3x^2)(-x+5-x+5) \ \text{d}x=[/tex]
[tex]$=2\int\limits^{0}_{-5}(8x-3x^2)(x+5) \ \text{d}x+2\int\limits^{5}_{0}(8x-3x^2)(5-x) \ \text{d}x=[/tex]
[tex]$=2\int\limits^{0}_{-5}-3x^3-7x^2+40x \ \text{d}x+2\int\limits^{5}_{0} 3x^3-23x^2+40x \ \text{d}x=[/tex]
[tex]$= 2 \cdot \Big(-\frac{3}{4}x^4-\frac{7}{3}x^3+20x^2\Big)\Bigg|^{0}_{-5}+2 \cdot \Big(\frac{3}{4}x^4-\frac{23}{3}x^3+20x^2\Big)\Bigg|^{0}_{-5}=[/tex]
[tex]$=-\frac{3875}{6}+\frac{125}{6}=-625[/tex]