sifat eksponen yang digunakan :
[tex] \frac{ {x}^{n} }{ {x}^{m} } = {x}^{n - m} [/tex]
[tex] {x}^{ - n} = \frac{1}{ {x}^{n} } [/tex]
_____________________________________
[tex] = {3}^{4} \div {3}^{7} [/tex]
[tex] = {3}^{4 - 7} [/tex]
[tex] = {3}^{ - 3} [/tex]
[tex] = \frac{1}{ {3}^{3} } [/tex]
[tex] = \frac{3}{243} [/tex]
[tex] = \frac{ {3}^{1} }{ {3}^{5} } [/tex]
[tex] = {3}^{1 - 5} [/tex]
[tex] = {3}^{ - 4} [/tex]
[tex] = \frac{1}{ {3}^{4} } [/tex]
[tex] = {5}^{2} - {5}^{ - 2} [/tex]
[tex] = {5}^{2} - \frac{1}{ {5}^{2} } [/tex]
[tex] = \frac{ {5}^{4} }{ {5}^{2} } - \frac{1}{ {5}^{2} } [/tex]
[tex] = \frac{ {5}^{4} - 1 }{ {5}^{2} } [/tex]
Jawaban:
3^4 ÷ 3^7
3^4-7
3^-3
1/3³
1/3×3×3
1/27
3/243
3÷3/243÷3
1/81
5² - 5-²
5×5 - 1/5²
25 - 1/25
[tex] \frac{25}{1} - \frac{1}{25} = \frac{625}{25} - \frac{1}{25} = \frac{624}{25} [/tex]
Salah Koreksi.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
sifat eksponen yang digunakan :
[tex] \frac{ {x}^{n} }{ {x}^{m} } = {x}^{n - m} [/tex]
[tex] {x}^{ - n} = \frac{1}{ {x}^{n} } [/tex]
_____________________________________
[tex] = {3}^{4} \div {3}^{7} [/tex]
[tex] = {3}^{4 - 7} [/tex]
[tex] = {3}^{ - 3} [/tex]
[tex] = \frac{1}{ {3}^{3} } [/tex]
_____________________________________
[tex] = \frac{3}{243} [/tex]
[tex] = \frac{ {3}^{1} }{ {3}^{5} } [/tex]
[tex] = {3}^{1 - 5} [/tex]
[tex] = {3}^{ - 4} [/tex]
[tex] = \frac{1}{ {3}^{4} } [/tex]
_____________________________________
[tex] = {5}^{2} - {5}^{ - 2} [/tex]
[tex] = {5}^{2} - \frac{1}{ {5}^{2} } [/tex]
[tex] = \frac{ {5}^{4} }{ {5}^{2} } - \frac{1}{ {5}^{2} } [/tex]
[tex] = \frac{ {5}^{4} - 1 }{ {5}^{2} } [/tex]
Jawaban:
3^4 ÷ 3^7
3^4-7
3^-3
1/3³
1/3×3×3
1/27
3/243
3÷3/243÷3
1/81
5² - 5-²
5×5 - 1/5²
25 - 1/25
[tex] \frac{25}{1} - \frac{1}{25} = \frac{625}{25} - \frac{1}{25} = \frac{624}{25} [/tex]
Salah Koreksi.