[tex]\rm E.\frac{2}{5}[/tex]
[tex]\rm \cos\x=2\sin\x[/tex]
[tex]\rm \frac{\cos\x}{\sin\x}=2[/tex]
[tex]\rm \frac{\sin\x}{\cos\x}=\frac{1}{2}[/tex]
[tex]\rm \tan\x=\frac{1}{2}[/tex]
[tex]\rm \frac{de}{sa}=\frac{1}{2}\\[/tex]
[tex]\rm mi=\sqrt{de^2+sa^2}=\sqrt{1^2+2^2}=\sqrt{5}\\[/tex]
=====
[tex]\rm (de=1),(mi=\sqrt{5}),(sa=2)\\[/tex]
[tex]\rm \cos\x(\sin\x)=\frac{sa}{mi}(\frac{de}{mi}[/tex]
[tex]\rm =\frac{2}{\sqrt{5}}(\frac{1}{\sqrt{5}}=\frac{2}{5}...E[/tex]
Jawab:
E
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\cos x&\:=2\sin x\\\frac{\cos x}{\sin x}\:&=2\\\cot x\:&=2\\\frac{a}{b}\:&=\frac{2}{1}\end{aligned}[/tex]
Tentukan sin x dari rumus Pythagoras
[tex]\begin{aligned}c&\:=\sqrt{a^2+b^2}\\\:&=\sqrt{2^2+1^2}\\\:&=\sqrt{5}\end{aligned}[/tex]
sehingga
[tex]\begin{aligned}\sin x&\:=\frac{b}{c}\\\:&=\frac{1}{\sqrt{5}}\end{aligned}[/tex]
maka
[tex]\begin{aligned}\cos x\sin x&\:=2\sin x\sin x\\\:&=2\sin^2 x\\\:&=2\left ( \frac{1}{\sqrt{5}} \right )^2\\\:&=\frac{2}{5}\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawaban:
[tex]\rm E.\frac{2}{5}[/tex]
Penjelasan:
[tex]\rm \cos\x=2\sin\x[/tex]
[tex]\rm \frac{\cos\x}{\sin\x}=2[/tex]
[tex]\rm \frac{\sin\x}{\cos\x}=\frac{1}{2}[/tex]
[tex]\rm \tan\x=\frac{1}{2}[/tex]
[tex]\rm \frac{de}{sa}=\frac{1}{2}\\[/tex]
[tex]\rm mi=\sqrt{de^2+sa^2}=\sqrt{1^2+2^2}=\sqrt{5}\\[/tex]
=====
[tex]\rm (de=1),(mi=\sqrt{5}),(sa=2)\\[/tex]
=====
[tex]\rm \cos\x(\sin\x)=\frac{sa}{mi}(\frac{de}{mi}[/tex]
[tex]\rm =\frac{2}{\sqrt{5}}(\frac{1}{\sqrt{5}}=\frac{2}{5}...E[/tex]
Verified answer
Jawab:
E
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned}\cos x&\:=2\sin x\\\frac{\cos x}{\sin x}\:&=2\\\cot x\:&=2\\\frac{a}{b}\:&=\frac{2}{1}\end{aligned}[/tex]
Tentukan sin x dari rumus Pythagoras
[tex]\begin{aligned}c&\:=\sqrt{a^2+b^2}\\\:&=\sqrt{2^2+1^2}\\\:&=\sqrt{5}\end{aligned}[/tex]
sehingga
[tex]\begin{aligned}\sin x&\:=\frac{b}{c}\\\:&=\frac{1}{\sqrt{5}}\end{aligned}[/tex]
maka
[tex]\begin{aligned}\cos x\sin x&\:=2\sin x\sin x\\\:&=2\sin^2 x\\\:&=2\left ( \frac{1}{\sqrt{5}} \right )^2\\\:&=\frac{2}{5}\end{aligned}[/tex]