Nilai logaritma [tex]^x \: log \: y^5 \:+\: (^x \: log \: y)^{- 2}[/tex] adalah 24. Jawaban B. Menggunakan pemisalan dan sifat-sifat logaritma.
Penjelasan dengan langkah-langkah:
Diketahui:
Ditanyakan:
Jawaban:
Misalkan [tex]^x \: log \: y[/tex] = p maka
[tex]^x \: log^2 \: y \:-\: ^x \: log \: y^5 \:=\: - 1[/tex]
[tex](^x \: log \: y)^2 \:-\: 5 \: ^x \: log \: y \:=\: - 1[/tex]
[tex]p^2 \:-\: 5p \:=\: - 1[/tex]
[tex]p^2 \:-\: 5p \:+\: 1 \:=\: 0[/tex]
Menggunakan rumus ABC untuk persamaan kuadrat ap² + bp + c = 0
[tex]p_{1 , 2} \:=\: \frac{- b \pm \sqrt{b^2 \:-\: 4ac}}{2a}[/tex]
[tex]p_{1 , 2} \:=\: \frac{5 \pm \sqrt{(- 5)^2 \:-\: (4 \times 1 \times 1)}}{2 \times 1}[/tex]
[tex]p_{1 , 2} \:=\: \frac{5 \pm \sqrt{25 \:-\: 4}}{2}[/tex]
[tex]p_{1 , 2} \:=\: \frac{5 \pm \sqrt{21}}{2}[/tex]
[tex]^x \: log \: y^5 \:+\: (^x \: log \: y)^{- 2}[/tex]
= [tex]5 \: ^x \: log \: y \:+\: (\frac{1}{^x \: log \: y})^2[/tex]
= [tex]5p \:+\: \frac{1}{p^2}[/tex]
Untuk p₁
[tex]5p_1 \:+\: \frac{1}{p_1^2}[/tex]
= [tex]5 \times \frac{5 \:+\: \sqrt{21}}{2} \:+\: \frac{1}{(\frac{5 \:+\: \sqrt{21}}{2})^2}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{1}{(\frac{25 \:+\: 10 \sqrt{21} \:+\: 21}{4})}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{4}{46 \:+\: 10 \sqrt{21}}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{4}{2 \: (23 \:+\: 5 \sqrt{21})}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:+\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:+\: 5 \sqrt{21}} \times \frac{23 \:-\: 5 \sqrt{21}}{23 \:-\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:-\: 5 \sqrt{21})}{529 \:-\: 525}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:-\: 5 \sqrt{21})}{4}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{23 \:-\: 5 \sqrt{21}}{2}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21} \:+\: 23 \:-\: 5 \sqrt{21}}{2}[/tex]
= [tex]\frac{48}{2}[/tex]
= 24
Untuk p₂
[tex]5p_2 \:+\: \frac{1}{p_2^2}[/tex]
= [tex]5 \times \frac{5 \:-\: \sqrt{21}}{2} \:+\: \frac{1}{(\frac{5 \:-\: \sqrt{21}}{2})^2}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{1}{(\frac{25 \:-\: 10 \sqrt{21} \:+\: 21}{4})}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{4}{46 \:-\: 10 \sqrt{21}}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{4}{2 \: (23 \:-\: 5 \sqrt{21})}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:-\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:-\: 5 \sqrt{21}} \times \frac{23 \:+\: 5 \sqrt{21}}{23 \:+\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:+\: 5 \sqrt{21})}{529 \:-\: 525}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:+\: 5 \sqrt{21})}{4}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{23 \:+\: 5 \sqrt{21}}{2}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21} \:+\: 23 \:+\: 5 \sqrt{21}}{2}[/tex]
Pelajari lebih lanjut
#BelajarBersamaBrainly #SPJ1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Nilai logaritma [tex]^x \: log \: y^5 \:+\: (^x \: log \: y)^{- 2}[/tex] adalah 24. Jawaban B. Menggunakan pemisalan dan sifat-sifat logaritma.
Penjelasan dengan langkah-langkah:
Diketahui:
Ditanyakan:
Jawaban:
Misalkan [tex]^x \: log \: y[/tex] = p maka
[tex]^x \: log^2 \: y \:-\: ^x \: log \: y^5 \:=\: - 1[/tex]
[tex](^x \: log \: y)^2 \:-\: 5 \: ^x \: log \: y \:=\: - 1[/tex]
[tex]p^2 \:-\: 5p \:=\: - 1[/tex]
[tex]p^2 \:-\: 5p \:+\: 1 \:=\: 0[/tex]
Menggunakan rumus ABC untuk persamaan kuadrat ap² + bp + c = 0
[tex]p_{1 , 2} \:=\: \frac{- b \pm \sqrt{b^2 \:-\: 4ac}}{2a}[/tex]
[tex]p_{1 , 2} \:=\: \frac{5 \pm \sqrt{(- 5)^2 \:-\: (4 \times 1 \times 1)}}{2 \times 1}[/tex]
[tex]p_{1 , 2} \:=\: \frac{5 \pm \sqrt{25 \:-\: 4}}{2}[/tex]
[tex]p_{1 , 2} \:=\: \frac{5 \pm \sqrt{21}}{2}[/tex]
[tex]^x \: log \: y^5 \:+\: (^x \: log \: y)^{- 2}[/tex]
= [tex]5 \: ^x \: log \: y \:+\: (\frac{1}{^x \: log \: y})^2[/tex]
= [tex]5p \:+\: \frac{1}{p^2}[/tex]
Untuk p₁
[tex]5p_1 \:+\: \frac{1}{p_1^2}[/tex]
= [tex]5 \times \frac{5 \:+\: \sqrt{21}}{2} \:+\: \frac{1}{(\frac{5 \:+\: \sqrt{21}}{2})^2}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{1}{(\frac{25 \:+\: 10 \sqrt{21} \:+\: 21}{4})}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{4}{46 \:+\: 10 \sqrt{21}}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{4}{2 \: (23 \:+\: 5 \sqrt{21})}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:+\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:+\: 5 \sqrt{21}} \times \frac{23 \:-\: 5 \sqrt{21}}{23 \:-\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:-\: 5 \sqrt{21})}{529 \:-\: 525}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:-\: 5 \sqrt{21})}{4}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21}}{2} \:+\: \frac{23 \:-\: 5 \sqrt{21}}{2}[/tex]
= [tex]\frac{25 \:+\: 5 \sqrt{21} \:+\: 23 \:-\: 5 \sqrt{21}}{2}[/tex]
= [tex]\frac{48}{2}[/tex]
= 24
Untuk p₂
[tex]5p_2 \:+\: \frac{1}{p_2^2}[/tex]
= [tex]5 \times \frac{5 \:-\: \sqrt{21}}{2} \:+\: \frac{1}{(\frac{5 \:-\: \sqrt{21}}{2})^2}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{1}{(\frac{25 \:-\: 10 \sqrt{21} \:+\: 21}{4})}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{4}{46 \:-\: 10 \sqrt{21}}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{4}{2 \: (23 \:-\: 5 \sqrt{21})}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:-\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2}{23 \:-\: 5 \sqrt{21}} \times \frac{23 \:+\: 5 \sqrt{21}}{23 \:+\: 5 \sqrt{21}}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:+\: 5 \sqrt{21})}{529 \:-\: 525}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{2 \: (23 \:+\: 5 \sqrt{21})}{4}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21}}{2} \:+\: \frac{23 \:+\: 5 \sqrt{21}}{2}[/tex]
= [tex]\frac{25 \:-\: 5 \sqrt{21} \:+\: 23 \:+\: 5 \sqrt{21}}{2}[/tex]
= [tex]\frac{48}{2}[/tex]
= 24
Pelajari lebih lanjut
#BelajarBersamaBrainly #SPJ1