Odpowiedź:
[tex]\displaystyle \frac{1}{a+b} +\frac{1}{b+c} =\frac{3}{a+b+c} \\\frac{b+c+a+b}{(a+b)(b+c)} =\frac{3}{a+b+c} \\(2b+c+a)(a+b+c)=3(a+b)(b+c)\\2ab+2b^{2} +2bc+ac+bc+c^{2} +a^{2} +ab+ac=3ab+3ac+3b^{2} +3bc\\-b^{2} +a^{2} +c^{2} -ac=0\\b^{2} =a^{2} +c^{2} -ac[/tex]
tw. cosinusów gdzie
[tex]\displaystyle 2cos\alpha =1\\cos\alpha =\frac{1}{2} \qquad \text{dla}\quad\alpha =60^{\circ}[/tex]
c.n.d
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\displaystyle \frac{1}{a+b} +\frac{1}{b+c} =\frac{3}{a+b+c} \\\frac{b+c+a+b}{(a+b)(b+c)} =\frac{3}{a+b+c} \\(2b+c+a)(a+b+c)=3(a+b)(b+c)\\2ab+2b^{2} +2bc+ac+bc+c^{2} +a^{2} +ab+ac=3ab+3ac+3b^{2} +3bc\\-b^{2} +a^{2} +c^{2} -ac=0\\b^{2} =a^{2} +c^{2} -ac[/tex]
tw. cosinusów gdzie
[tex]\displaystyle 2cos\alpha =1\\cos\alpha =\frac{1}{2} \qquad \text{dla}\quad\alpha =60^{\circ}[/tex]
c.n.d