PEMBAHASAN
Trigonometri
y = arctan x → y' = 1/(x² + 1)
tan⁻¹ x = arctan x
Integral parsial
∫u dv = uv - ∫v du
∫x arctan x dx
= ∫arctan x . x dx
= ∫arctan x d(x²)/2
= 1/2 x² arctan x - ∫(x²/2) d(arctan x)
= 1/2 x² arctan x - 1/2 ∫x² . 1/(x² + 1) dx
= 1/2 x² arctan x - 1/2 ∫(x²/(x² + 1)) dx
= 1/2 x² arctan x - 1/2 ∫(1 - 1/(x² + 1)) dx
= 1/2 x² arctan x - 1/2 (∫dx - ∫d(arctan x))
= 1/2 x² arctan x - 1/2 x + 1/2 arctan x
__
tan 45° = 1
arctan 1 = 45° = π/4
tan (-45°) = -1
arctan (-1) = -π/4
batas atas 1 , batas bawah (-1)
= (1/2 . 1² . π/4 - 1/2 . 1 + 1/2 . π/4) - (1/2 . (-1)² . (-π/4) - 1/2 . (-1) + 1/2 . (-π/4))
= (π/8 - 1/2 + π/8) - (-π/8 + 1/2 - π/8)
= 4π/8 - 1
= 1/2 π - 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
PEMBAHASAN
Trigonometri
y = arctan x → y' = 1/(x² + 1)
tan⁻¹ x = arctan x
Integral parsial
∫u dv = uv - ∫v du
∫x arctan x dx
= ∫arctan x . x dx
= ∫arctan x d(x²)/2
= 1/2 x² arctan x - ∫(x²/2) d(arctan x)
= 1/2 x² arctan x - 1/2 ∫x² . 1/(x² + 1) dx
= 1/2 x² arctan x - 1/2 ∫(x²/(x² + 1)) dx
= 1/2 x² arctan x - 1/2 ∫(1 - 1/(x² + 1)) dx
= 1/2 x² arctan x - 1/2 (∫dx - ∫d(arctan x))
= 1/2 x² arctan x - 1/2 x + 1/2 arctan x
__
tan 45° = 1
arctan 1 = 45° = π/4
tan (-45°) = -1
arctan (-1) = -π/4
__
batas atas 1 , batas bawah (-1)
= (1/2 . 1² . π/4 - 1/2 . 1 + 1/2 . π/4) - (1/2 . (-1)² . (-π/4) - 1/2 . (-1) + 1/2 . (-π/4))
= (π/8 - 1/2 + π/8) - (-π/8 + 1/2 - π/8)
= 4π/8 - 1
= 1/2 π - 1